In the sequel, \(V \) denotes a vector space defined over the field \(\mathbb{F} = \mathbb{R} \) or \(\mathbb{C} \) unless otherwise specified.

1. Read from the textbook: Chapter 5, Section 4-6, Chapter 6, Section 1-2, Chapter 7, Section 1, 3-5.

2. [20pts] From the textbook: Chapter 5, Problem 4.3.

3. [20pts] From the textbook: Chapter 5, Problem 6.1 (only second and third matrices).

4. [40pts] Let \(v_1 = (1, 0, 1)^T, v_2 = (2, 2, 0)^T \), and \(V \) be the subspace in \(\mathbb{R}^3 \) spanned by \(v_1 \) and \(v_2 \).

 (a) Find \(\{u_1, u_2\} \) an orthogonal basis of \(V \).

 (b) For \(i = 1, 2 \), express \(v_i \) as a linear combination of the new basis.

 (c) Compute the orthogonal complement of \(V \) in \(\mathbb{R}^3 \).

 (d) Complete \(\{u_1, u_2\} \) to an orthogonal basis of \(\mathbb{R}^3 \).

 (e) Let \(w_1 = (1, -1, -1)^T, w_2 = (1, 1, 1)^T \). For each of \(w_i \), determine whether \(w_i \) belong to the space \(V \). If possible, write \(w_i \) as a linear combination of \(v_1, v_2 \). If not, find the distance from \(w_i \) to \(V \).

 (f) For \(w = (3023, 2345, 678)^T \): does \(w \) belong to the space \(V \)? (Hint: do not compute the distance!)

5. [20pts] Let \(T : V \to V \) be a self-adjoint linear operator on a real vector space \(V \). Assume that \(\langle Tv, v \rangle \geq 0 \) for every \(v \in V \). Show that for every positive integer \(k \), there is a linear operator \(S : V \to V \) such that \(T = S^k \).