Math 1b Analytical – Homework Set 9
Due 4:00 pm on Monday, March 6

Read from the textbook: Chapter 1, Sections 11-16 and Chapter 5.

(1) From Apostol, chapter 1.13: Problem 11.
 Also, compute an orthonormal basis for the subspace consisting of polynomials of degree at most 3.

(2) Let $V = \mathbb{R}^4$, and $U = L(v_1, v_2)$ be the subspace of V generated by the vectors $v_1 = (1, 3, 1, 1)$ and $v_2 = (3, 2, 2, 1)$.
 • Find an orthogonal basis of U.
 • Find the orthogonal projection of $v = (1, 1, 1, 1)$ onto U.
 • Find the distance of $v = (1, 1, 0, 0)$ from U.

(3) Let $L_{a,b}$ in \mathbb{R}^2 be the straight line defined by the equation $y = a + bx$ for some $a, b \in \mathbb{R}$. Given a collection of points $S = \{(x_i, y_i)\}_{i=1,\ldots,k}$ in \mathbb{R}^2: a line L is called the least squares fit to S if it minimizes the total quadratic error $\sum_{i=1}^{k} |a + bx_i - y_i|^2$. (E.g., this would be the line passing thru all points of S if it existed.) Find the line that best fits the points $(-2, 4), (-1, 3), (0, 1), (2, 0)$ in this sense.

(4) Let $v_1 = (1, 0, 1, 0), v_2 = (2, 2, 0, 0)$, and $V = L(v_1, v_2)$ in \mathbb{R}^4.
 (a) Find $\{u_1, u_2\}$ an orthogonal basis of V.
 (b) For $i = 1, 2$: express v_i as a linear combination of the new basis.
 (c) Compute the orthogonal complement of V.
 (d) Complete $\{u_1, u_2\}$ to an orthogonal basis of \mathbb{R}^4.
 (e) For $w = (1, -1, -1, 0)$: does w belong to the space V? If possible, write w as a linear combination of u_1, u_2.
 (f) For $w = (1, 1, 1, 1)$: does w belong to the space V? If not, find the distance from w to V.