1) a) Compute the Zeta function

$$\zeta_K(s) := \prod_v \frac{1}{1 - N_v^{-s}}$$

of the field $K = \mathbb{F}_q(t)$. Here the Euler product is over all discrete valuations v of K and N_v denotes the cardinality of the residue field of v.

b) Show that the number $i(n)$ of monic irreducible polynomials of degree n with coefficients in \mathbb{F}_q is

$$i(n) = \frac{1}{n} \sum_{d|n} \mu(d)q^{n/d}$$

where μ is the Moebius function (you might have to read up on the Moebius inversion formula). Prove that $i(n) > 1$ for any $n \geq 1$.

2) Do Ch. 7 exercise 41 (you may freely use results of previous exercises and theorems with proper quotation).