(1) (a) Show that for any ring A, any A module M and any ideal $I \subset A$, we have

$$A/I \otimes_A M \cong M/IM.$$

(b) Show that for ideals I and J, we have $A/I \otimes A/J \cong A/(I + J)$.

(2) Suppose that

$$0 \to M' \to M \to M'' \to 0$$

is a short exact sequence of A modules. Show that the sequence is split if and only if the induced map $\text{Hom}_A(M'', M) \to \text{Hom}_A(M'', M'')$ induced by the right hand map in the sequence is surjective. Use this to show that if M'' is finitely presented, then the sequence is split if and only if the localized sequences

$$0 \to M'_m \to M_m \to M''_m \to 0$$

are split for all maximal ideals $m \subset A$.

(3) (a) Show that if M is an A module and B is an A-algebra, then $B \otimes_A M$ is naturally a B-module.

(b) Show that if B and C are A-algebras, then $B \otimes_A C$ has a natural ring structure which makes it both a B-algebra and a C-algebra.

(c) Show that in the above situation, $B \otimes_A C$ satisfies the following universal property. Given any ring R and ring homomorphisms $f : B \to R$ and $g : C \to R$ such that the induced morphisms from A to R agree, there exists a unique morphism from $B \otimes_A C$ to R making the diagram below commute:

```
\begin{tikzcd}
A \arrow[dr] & B \arrow[l] \arrow[d] \arrow[r] & R. \arrow[dl] \\
& B \otimes_A C \arrow[r] & \\
& C \arrow[ur] &
\end{tikzcd}
```

(4) Show that the tensor product of two flat A modules is flat.

(5) Show that if M is a flat A module, and if a is an element of A which is not a zero divisor, then a is not a zero divisor in M, i.e. if $am = 0$ for some $m \in M$ we must have $m = 0$.