(1) Suppose that a ring A has the property that for every prime ideal p of A, the local ring A_p contains no nonzero nilpotents. Show that A contains no nonzero nilpotents. If each A_p is an integral domain, is A necessarily an integral domain?

(2) For a ring A and a multiplicative subset S, show that an $S^{-1}A$ module is the same thing as an A module on which the elements of S act as automorphisms. In particular, the natural map from M to $S^{-1}M$ is an isomorphism if and only if every element of S acts invertibly on M.

(3) We say a ring R is \mathbb{Z}-graded if we have an infinite direct sum decomposition

$$R = \cdots \oplus R_{-2} \oplus R_{-1} \oplus R_0 \oplus R_1 \oplus \cdots$$

and $R_i \cdot R_j \subset R_{i+j}$. (A common situation is when all the negative terms vanish, in which case we would say R is a graded ring.) An element of R is called homogeneous if it lies in one of the R_i. Note that by definition, every element f in R can be written uniquely in the form $f = \sum f_i$ as a finite sum of homogeneous elements which are called the homogeneous components of f. In a graded or \mathbb{Z}-graded ring, an ideal is called homogeneous if it is generated by homogeneous elements.

(a) Show that an ideal I is homogeneous if and only if for every f in I, all the homogeneous components of f are in I.

(b) Show that the radical of a homogeneous ideal is homogeneous.

(b) Show that a homogeneous ideal I is prime if and only if for all homogeneous elements f, g in R, we have $fg \in I$ if and only if $f \in I$ or $g \in I$.

(4) Let R be a \mathbb{Z}-graded ring, and f is an element of R_1.

(a) Show that $R_f = R[f^{-1}]$ is naturally \mathbb{Z}-graded. (What must the degree of $\frac{1}{f}$ be?) Let A be the degree zero graded piece of R_f.

(b) Show that $R_f \cong A[x, x^{-1}]$, the ring of Laurent polynomials with coefficients in A. (Here x is just a new formal variable.)

(c) Show that $A \cong R/(f - 1)$.