Let A be a ring, and let I be an ideal contained in $\text{nil}(A)$. (i.e. Every element of I is nilpotent.) Show that if $a \in A$ maps to a unit in A/I, then a is a unit in A. Give an example to show that the hypothesis $I \subset \text{nil}(A)$ is necessary.

(2) Show that for any ideal I in a ring, there exists a prime minimal among those containing I. (Hint: Show that the intersection of a decreasing chain of primes is prime.)

(3) Show that if an ideal is contained in a finite union of prime ideals, then it must be contained in one of them.

(4) Show that every prime ideal in a product ring $R \times R'$ is of the form $p \times R'$ for p a prime in R or $R \times p'$ for p' a prime ideal in R'.

(5) A multiplicative subset $S \subset R$ is called saturated if $xy \in X$ implies that both x and y are in S. Show that:

(a) S is saturated if and only if the complement of S is a union of prime ideals.
(b) If S is any multiplicatively closed subset of R, there is a unique smallest saturated multiplicatively closed subset \overline{S} containing S, and that \overline{S} is the complement of the union of the prime ideals not meeting S.
(c) Show that \overline{S} is the largest multiplicative subset containing S such that the natural map from $S^{-1}R$ to $\overline{S}^{-1}R$ is an isomorphism.

(6) (a) Suppose I is an ideal whose radical is finitely generated – that is, $\sqrt{I} = \langle a_1, \ldots, a_r \rangle$ for some collection of elements a_1, \ldots, a_r in R. Show that $(\sqrt{I})^n \subset I$ for sufficiently large n.

(b) Suppose I is an ideal and p is a finitely generated prime ideal. Show that $\sqrt{I} = p$ if and only if there exists an $n > 0$ such that $p^n \subset I \subset p$.