WEEK 3: NUMBER THEORY

Example 1. Let \(a_1, a_2, \ldots \) be a sequence such that \(a_1 = 43, a_2 = 142, \) and \(a_{n+1} = 3a_n + a_{n-1} \) for all \(n \geq 2. \)
Prove that

(a) \(a_n \) and \(a_{n+1} \) are relatively prime for all \(n \geq 1; \)
(b) for every positive integer \(m, \) there exist infinitely many \(n \)'s such that \(a_n - 1 \) and \(a_{n+1} - 1 \) are both divisible by \(m. \)

Example 2. Suppose that \(\{a_n\}_{n \geq 1} \) is a sequence of positive integers satisfying \(\gcd(a_i, a_j) = \gcd(i, j) \) for \(i \neq j. \) Show that \(a_n = n \) for each \(n. \)

Example 3. Let \(f \) be a bijection of the set of positive integers. Prove that there exist positive integers \(a < a + d < a + 2d \) such that \(f(a) < f(a + d) < f(a + 2d). \)

Example 4. For each positive integer \(n, \) let \(f(n) \) be the greatest common divisor of \(100+n^2 \) and \(100+(n+1)^2. \)
Find the maximum value of \(f(n) \) as \(n \) ranges through the positive integers.

Example 5. Let \(\{x_n\}_{n \geq 1} \) be a sequence of nonnegative integers such that

(i) \(x_1 = x_4 = x_5 = 1, x_2 = x_3 = x_6 = 0; \)
(ii) \(x_{n+6} \) equals the last digit of \(x_n + x_{n+1} + \cdots + x_{n+5} \) in decimal expansion for all \(n. \)
Does there exists a positive integer \(n \) such that \(x_n = x_{n+2} = x_{n+4} = 0 \) and \(x_{n+1} = x_{n+3} = x_{n+5} = 1? \)