Ma/CS 6a
Class 25: Partitions

Explain the significance of the following sequence: un, dos, tres, quatre, cinc, sis, set, vuit, nou, deu...

Answer

Explain the significance of the following sequence: un, dos, tres, quatre, cinc, sis, set, vuit, nou, deu...

These are the Catalan numbers!

(The numbers one to ten in Catalan.)
Partitions of a Positive Integer

- For a positive integer n, denote by $p(n)$ the number of ways to write n as a sum of unordered positive integers.
- **Example.** We can write $n = 5$ as

 $5, \quad 4 + 1, \quad 3 + 2, \quad 3 + 1 + 1, \quad 2 + 2 + 1, \quad 2 + 1 + 1 + 1, \quad 1 + 1 + 1 + 1 + 1.$

 so $p(5) = 7$.
 - $p(20) = 627$.
 - $p(100) = 190569292$.

Ferrers Diagrams

- **Ferrers diagrams** are a graphic way of representing partitions.

 $14 = 6 + 4 + 3 + 1$

 $p(4) = 5$
A Simple Observation

- **Claim.** Let \(n \) and \(r \) be positive integers. Then

\[
p(n \mid \text{number of parts } \leq r) = p(n + r \mid \text{number of parts } = r).
\]

- **Proof.** We find a **bijection** between the two sets of partitions:

\[
\begin{align*}
n + r & \longleftrightarrow n \\
\end{align*}
\]
Detailed Proof

- We describe a bijection between the sets:
 - P_n - Partitions of n with at most r parts.
 - P_{n+r} - Partitions of $n + r$ with exactly r parts.
- Given a partition of P_n, we add a new first column with r elements, obtaining a partition of P_{n+r}.
- Given a partition of P_{n+r}, we remove the first column to obtain a partition of P_n.

Conjugate Partitions

- Two partitions of a number n are said to be conjugate if one is obtained from the other by switching the rows and columns in the Ferrers Diagram.
Using Conjugate Partitions

- Consider a pair of conjugate partitions \(\alpha, \beta \). The **size of the largest part of \(\alpha \)** is the **number of parts of \(\beta \)**.
- Using a **bijection** argument as before, we have

\[
 p(n \mid \text{largest part of size } m) = p(n \mid \text{number of parts } = m).
\]

Self-Conjugation

- A partition is **self-conjugate** if it is its own conjugate.
- **Claim.**

\[
 p(n \mid \text{self–conjugate}) = p(n \mid \text{the parts are distinct and odd}).
\]
Self Conjugation Proof

\[p(n \mid \text{self–conjugate}) = p(n \mid \text{the parts are distinct and odd}). \]

\[\text{Proof.} \quad \text{As before, we find a bijection between the two sets of partitions.} \]

\[\text{Given a self conjugate partition, let } k_i \text{ be the number of elements in the } 1^{\text{st}} \text{ row and column after removing the first } i - 1 \text{ rows and columns. For } i < j, \text{ we have } k_i > k_j. \]

\[\text{We use the } 2k_i - 1 \text{ elements in the } i^{\text{'th}} \text{ “row and column” to create the } i^{\text{'th}} \text{ row.} \]

Partitions and Generating Functions

- To calculate \(p(i) \), we define a generating function for the number of partitions:
 \[P(x) = p(0) + p(1)x + p(2)x^2 + \cdots \]
 \[\text{By convention, we write } p(0) = 1. \]

- We have as many initial values as we like:
 \[p(1) = 1, \quad p(2) = 2, \quad p(3) = 3, \quad p(4) = 5, \quad p(5) = 7, \ldots \]

- Not clear how to find a recursive relation.
Warm-Up Question

- **Recall.** For any positive integer n, we have
 \[(1 - x^n)^{-1} = 1 + x^n + x^{2n} + x^{3n} + \cdots\]

- $p_n(m) = \text{number of partitions of } m$
 where each part is of size n.
 \[
p_n(m) = \begin{cases}
1, & \text{if } n|m, \\
0, & \text{otherwise}.
\end{cases}
\]

- The corresponding generating function:
 \[P_n(x) = p_n(0) + p_n(1)x + p_n(2)x^2 + \cdots
 = 1 + x^n + x^{2n} + x^{3n} + \cdots
 = (1 - x^n)^{-1}.
\]

A Bit of Progress

- Let $p_{n,m}(i)$ denote the number of partitions of i
 where each part is equal to either m or n.

- Let
 \[P_{n,m}(x) = p_{n,m}(0) + p_{n,m}(1)x + p_{n,m}(2)x^2 + \cdots
 = (1 + x^n + x^{2n} + \cdots)(1 + x^m + x^{2m} + \cdots)
 = (1 - x^n)^{-1}(1 - x^m)^{-1}.
\]
Intuitive Explanation

- When opening the parentheses, $p_{2,4}(10)$ is the coefficient of x^{10}.

\[
(1 + x^2 + x^4 + x^6 + x^8 + \cdots)(1 + x^4 + x^8 + \cdots)
\]

\[
2 + 4 + 4
\]

\[
(1 + x^2 + x^4 + x^6 + x^8 + \cdots)(1 + x^4 + x^8 + \cdots)
\]

\[
2 + 2 + 2 + 4
\]

\[
(1 + x^2 + x^4 + x^6 + x^8 + x^{10} + \cdots)(1 + x^4 + \cdots)
\]

\[
2 + 2 + 2 + 2 + 2
\]

Hardy, Ramanujan, and Partitions

- Hardy and Ramanujan found the approximation

\[
p(n) \approx \frac{1}{4n\sqrt{3}} e^{\pi\sqrt{2n/3}}.
\]

- They also expressed $p(n)$ exactly as an infinite sum.
Changing a Dollar

- **Problem.** In how many ways can a dollar be exchanged for quarters (25c), dimes (10c), and nickels (5c)?
- To make the numbers simpler, we can divide everything by 5:
 - In how many ways can we write 20 as a sum of 1’s, 2’s, and 5’s.
 - The coefficient of y^{20} in $(1 - y)^{-1}(1 - y^2)^{-1}(1 - y^5)^{-1}$.

Number Crunching

- First, let us calculate
 \[(1 - y^2)^{-1}(1 - y^5)^{-1} = (1 + y^2 + y^4 + \cdots + y^{20})(1 + y^5 + y^{10} + y^{15})\]
Number Crunching (cont.)

- We have
 \[(1 - x^2)^{-1}(1 - x^5)^{-1}\]
 \[= 1 + y^2 + y^4 + y^5 + y^6 + y^7 + y^8 + y^9 + 2y^{10} + y^{11} + 2y^{12} + y^{13} + 2y^{14} + 2y^{15} + 2y^{16} + 2y^{17} + 2y^{18} + 2y^{19} + 3y^{20}.\]

- What is the coefficient of \(y^{20}\) in \[(1 - y)^{-1}(1 - y^2)^{-1}(1 - y^5)^{-1}\]?

 ◦ Every element of \((1 - y^2)^{-1}(1 - y^5)^{-1}\) corresponds to one way of writing 20:
 \[1 + 1 + 1 + 1 + 1 + 1 + 1 + 2 + 1 + 2 + 1 + 2 + 2 + 2 + 2 + 2 + 3 = 29\]

Back to General Partitions

- **Theorem.** The generating function of \(p(n)\) can be written as
 \[P(x) = p(0) + p(1)x + p(2)x^2 + \cdots\]
 \[= \prod_{i=1}^{\infty}(1 - x^i)^{-1}\]
 \[= (1 + x + x^2 + \cdots)(1 + x^2 + x^4 + \cdots)(1 + x^3)\]
Proof Sketch

- We need to verify that the coefficient of x^n in $P(x)$ is $p(n)$.
 - Consider a partition $n = m_1 s_1 + m_2 s_2 + \ldots + m_k s_k$, where s_1, \ldots, s_k are distinct numbers and m_i is the number of parts of size s_i in the partition.
 - In $\prod_{i=1}^{\infty} (1 - x^i)^{-1}$, this partition corresponds to taking $x^{m_i s_i}$ from \((1 + x^{s_i} + x^{2s_i} + \ldots)\).
 - Similarly, any choice of elements from the parentheses in $\prod_{i=1}^{\infty} (1 - x^i)^{-1}$ that yields x^n corresponds to a partition of n.

A Small Issue

- Our proof is fine if we have a product of finitely many terms, but in $\prod_{i=1}^{\infty} (1 - x^i)^{-1}$ we have products of infinitely many terms!
 - When proving that the coefficient of x^n is $p(n)$, it suffices to consider $\prod_{i=1}^{n} (1 - x^i)^{-1}$.
Restricted Partitions #1

• Consider partitions of n with no more than k identical parts.

• For example, when $n = 12$ and $k = 2$:
 ◦ $3 + 3 + 3 + 3$ and $4 + 4 + 4$ are not valid.
 ◦ $5 + 5 + 2$ and $2 + 2 + 4 + 4$ are valid.

• Problem. What is the generating function of partitions that have no more than k identical parts?

Restricted Partitions #1 (cont.)

• Special case. Taking $k = 1$, we get the generating function for $p(n \mid$ each part is distinct):
 \[(1 + x)(1 + x^2)(1 + x^3) \cdots\]

• What about the case of an arbitrary k?
 \[
 \prod_{n=1}^{\infty} \left(1 + x^n + x^{2n} + \cdots + x^{kn}\right).
 \]
Restricted Partitions #2

• Consider partitions of \(n \) with **only odd parts**.

• For example, when \(n = 12 \):
 \[
 1 + 1 + 1 + \cdots + 1, 3 + 3 + 3 + 3, 11 + 1, \text{ etc...}
 \]

• **Problem.** What is the generating function of partitions with only odd parts?
 \[
 (1 - x)^{-1} (1 - x^3)^{-1} (1 - x^5)^{-1} \cdots \]
 \[
 = \prod_{n=1}^{\infty} (1 - x^{2n-1})^{-1}.
 \]

Restricted Partitions #3

• Consider partitions of \(n \) with **only even parts**.

• For example, when \(n = 12 \):
 \[
 10 + 2, 2 + 2 + \cdots + 2, 4 + 4 + 4, \text{ etc...}
 \]

• **Problem.** What is the generating function of partitions with only even parts?
 \[
 (1 - x^2)^{-1} (1 - x^4)^{-1} (1 - x^6)^{-1} \cdots \]
 \[
 = \prod_{n=1}^{\infty} (1 - x^{2n})^{-1}
 \]
Restricted Partitions #4

- Consider partitions of n with each part equals to at most k.
- For example, when $n = 12$ and $k = 4$:
 - $5 + 5 + 2$ and $10 + 1 + 1$ are not valid.
- **Problem.** What is the generating function of partitions whose parts equal to at most k?

$$(1 - x)^{-1}(1 - x^2)^{-1}(1 - x^3)^{-1} \cdots (1 - x^k)^{-1}$$

$$= \prod_{n=1}^{k} (1 - x^n)^{-1}. $$

The End: Teaching Survey