Matchings

- A **matching** in an undirected graph is a set of vertex-disjoint edges.
- The **size** of a matching is the number of edges in it.
- A **maximum matching** of G is a matching of maximum size.
A Committee of Committees

- The US senate has 20 committees and each senator may serve on several committees.
- The *committee of committees* should have a representative from each committee, and no senator is allowed to represent more than one committee.
- Is this always possible?
 - No! What if a senator is the only person on two committees?

A Committee of Committees?

- How can we find out whether a committee of committees is possible?
 - Build a graph!
A Committee of Committees?

- A committee of committees is possible if the graph has a matching of size 20.

Problem: Retreat Resort

- Problem. A retreat resort has n guests staying in it. The resort offers hikes with travelling guides.
 - Every guest has a list of hikes that s/he is interested in.
 - Every guide is allowed to take up to 5 people.
 - Describe an efficient algorithm that finds whether every guest can go on a hike that s/he is interested in.
Building a Graph

• Create a bipartite graph with a vertex for every guest and for every hike.
 ◦ An edge between every guest and every hike that he is interested in.

Fixing the Graph

• A matching in the graph does not take into account that up to 5 people can go on a hike.
• Split every hike vertex v into five vertices, and connect each of them to each of the vertices that v was connected to.
• There is a valid hiking assignment if and only if the graph has a matching of size n.
Reminder: Perfect Matchings

A perfect matching of a graph $G = (V, E)$ is a matching of size $|V|/2$.

Reminder: Neighbor Sets

Let $G = (V_1 \cup V_2, E)$ be a bipartite graph. For any subset $A \subset V_1$, we define

$$N(A) = \{y \in Y \mid (x, y) \in E \text{ for some } x \in A\}.$$

$N(\{b, c, d\}) = \{u, v, w\}$

$N(\{a, e\}) = \{u, w, x\}$
Reminder: Variant of Hall's Theorem

- **Theorem.** Let $G = (V_1 \cup V_2, E)$ be a bipartite graph.
- There exists a matching of size $|V_1|$ in G if and only if for every $A \subset V_1$, we have $|A| \leq |N(A)|$.

Philip Hall

Deficiency

- Let $G = (V_1 \cup V_2, E)$ be a bipartite graph.
- The **deficiency** of G is
 \[
 \text{def}(G) = \max_{A \subset V_1} \{|A| - |N(A)|\}.
 \]
- What is the deficiency of

\[
\begin{align*}
A &= \{b, c, d\} \\
\end{align*}
\]
Deficiency

- Let $G = (V_1 \cup V_2, E)$ be a bipartite graph.
- The **deficiency** of G is
 \[\text{def}(G) = \max_{A \subseteq V_1} \{|A| - |N(A)|\}. \]
- The deficiency cannot be smaller than 0 since when $A = \emptyset$ we have
 \[|A| - |N(A)| = 0. \]

Deficiency and Maximum Matchings

- **Theorem.** Let $G = (V_1 \cup V_2, E)$ be a bipartite graph. The **size of the maximum matching** in G is
 \[|V_1| - \text{def}(G). \]
- This implies **Hall’s theorem.**
 - $\text{def}(G) = 0$ if and only if there exists a matching of size $|V_1|$.
 - When $|V_1| = |V_2|$, we have $\text{def}(G) = 0$ if and only if there exists a perfect matching.
Proof: One Direction

• Set \(d = \text{def}(G) \).
• There exists a subset \(A \subset V_1 \) such that \(|A| - |N(A)| = d \).
• In any matching of \(G \), at least \(d \) vertices of \(A \) are unmatched.
• No matching can have size larger than \(|V_1| - d \).

It remains to prove that a matching of this size does exist.
Proof: The Other Direction

- We add \(d \) new vertices to \(V_2 \).
 - We connect every new vertex to each vertex of \(V_1 \).
- Originally, every set \(A \subset V_1 \) satisfied\[|N(A)| \geq |A| - d.\]
 - Now \(|N(A)| \geq |A| \).
- By the variant of Hall’s theorem, there exists a matching \(M \) of size \(|V_1| \).
- Removing the new vertices, we obtain a matching of \(G \) of size \(|V_1| - d \).
The Size of a Maximum Matching

- Let $G = (V_1 \cup V_2, E)$ be a bipartite graph.
- Can we use the deficiency theorem to find the size of the maximum matching of M?

- We can check $|A| - |N(A)|$ of every subset $A \subset V_1$.
 - But there are $2^{|V_1|}$ such subsets!

Alternating Paths

- Let $G = (V_1 \cup V_2, E)$ be a bipartite graph, and let M be a matching of G.
- A path is alternating for M if it starts with an unmatched vertex of V_1 and every other edge of it is in M.
Augmenting Paths

- An alternating path is **augmenting** for \(M \) if it also ends with an unmatched vertex.
- In an augmenting path, by switching the edges that are in \(M \) with the edges that are not, we obtain a **larger matching**.

Existence of Augmenting Paths

- **Theorem.** If a matching \(M \) in a bipartite graph \(G = (V_1 \cup V_2, E) \) is **not a maximum matching**, then there exists an **augmenting path** for \(M \).
- **Proof.**
 - Let \(M^* \) be a maximum matching of \(G \).
 - Let \(F \) be the set of edges that are either in \(M \) or in \(M^* \), but **not in both**.
 - In the graph \(G' = (V, F) \), every vertex is of degree at most two.
Example: The Graph G'

- The graph $G' = (V, F)$.
 - Every vertex has a degree of at most two.
 - The graph is a union of disjoint paths and cycles.

Finding an Augmenting Path

- By definition, M^* has more edges than M.
- In at least one of the paths of G', M^* has more edges than M.
- This is an augmenting path for M!
Find a Maximum Matching

- We rely on the **theorem** to obtain an algorithm for finding a maximum matching.
- Let $G = (V_1 \cup V_2, E)$ be a bipartite graph.
- Start with any matching M. A single edge is fine.
- Repeatedly find an **augmenting path** for M and use it to obtain a larger matching.
- The process terminates after **at most** $|V_1|$ steps.

Finding an Augmenting Path

- Let $G = (V_1 \cup V_2, E)$ be a bipartite graph, and let M be a matching.
- We wish to find whether there is an augmenting path for M **starting at a specific unmatched vertex** $p_0 \in V_1$.
 - We run a variant of BFS from p_0.

BFS Variant

- The root of the BFS tree is p_0.
- At the first level we have vertices that are adjacent to p_0 in G.

BFS Variant (2)

- For each vertex of level 1, if it is matched in M, we connect it to its match.
BFS Variant (3)

- For each vertex of level 2, we connect it (by edges not in M) to any of its neighbors in G that are not yet in the tree.

BFS Variant (4)

- We repeat this process:
 - Vertices of **even levels** (p_i’s) have as their children every new vertex adjacent to them.
 - Vertices of **odd levels** (q_i’s) have only their matching vertex as a child.
BFS Variant (5)

• How can we tell whether an augmenting path for M starts at p_0?
 ◦ Every such path corresponds to an unmatched vertex at an odd level of the tree (a leaf at an odd level).

Concluding Remarks

• Given a matching M in a bipartite graph $G = (V_1 \cup V_2, E)$, for every vertex of V_1 that is unmatched in M:
 ◦ Run the BFS variant to check whether there is an augmenting path starting from it.

• If no augmenting paths were found — M is a maximum matching.

• Otherwise, we use an augmenting path to obtain a larger matching and repeat.
The End

Goodbye cruel world