2. (b) (5 points) Let \(\phi \) be any element in \(Aut_G(G/H) \), then \(\phi(H) = xH \) for some coset \(xH \) of \(H \). Note that \(\phi \) is completely determined by \(x \) in the sense that \(\phi(gH) = g\phi(H) = gxH \) for any \(g \in G \) (the first equality holds because \(\phi \) is a homomorphism of \(G \)-sets.) Thus we can denote any element in \(Aut_G(G/H) \) by \(\phi_x \) for some \(x \in G \).

Let \(f : Aut_G(G/H) \to N_G(H)/H \) be defined by \(f(\phi_x) = xH \). We first show that \(f \) is well-defined by showing (1) \(x \in N_G(H) \) and (2) \(f(\phi_x \circ \phi_y) = xy \). For (1), note that by definition \(\phi_x \) is injective, so \(\phi_x(gH) = \phi_x(H) \) implies \(g \in H \). But the equality condition also implies \(gxH = g\phi_x(H) = xH \), i.e. \(x^{-1}gx \in H \), so \(g \in xHx^{-1} \) and we have \(H \subseteq xHx^{-1} \). On the other hand, for any \(h \in H \), we have \(hxH = \phi_x(hH) = \phi_x(H) = xH \), so \(h \in x^{-1}Hx \), which implies \(H \subseteq x^{-1}Hx \). Hence we conclude \(Hx = xH \), i.e. \(x \in N_G(H) \). (2) is straightforward: for any \(gH \in G/H \), \(\phi_x \circ \phi_y(gH) = \phi_x(gy^{-1}H) = gy^{-1}x^{-1}H = g(xy)^{-1}H \).

\(f \) is surjective because by an reverse argument of (1), any \(x \in N_G(H) \) gives an automorphism of \(G/H \) as a \(G \)-set. \(f \) is injective because \(f(\phi_x) = H \Rightarrow xH = H \Rightarrow x \in H \).

3. (a) (5 points) By the hint we see that \(\tau \) must give bijections between \(\{1, 2\} \) and \(\{1, 2\} \) or \(\{3, 4\} \) and \(\{1, 2\} \) or \(\{3, 4\} \); and \(\{5, 6, 7\} \) and \(\{5, 6, 7\} \). Thus \(\tau \in \langle (1, 2), (3, 4), (1, 4), (2, 3), (5, 6, 7) \rangle \), in which there are 24 elements.

3. (b) (5 points) Let \(G \) be a group with \(p^2 \) elements, then the order of any element must be 1, \(p \) or \(p^2 \). If there exits some \(g \in G \) with \(o(g) = p^2 \), then \(\langle g \rangle \subseteq G \) and \(|\langle g \rangle| = p^2 \), so \(G = \langle g \rangle \cong \mathbb{Z}/p^2\mathbb{Z} \).

If no element of \(G \) has order \(p^2 \), then all nontrivial elements of \(G \) have order \(p \). Let \(g \in G - \{e\} \), then \(G - \{e\} - \langle g \rangle \neq \emptyset \) as \(p^2 - p - 1 > 0 \) for any integer prime \(p \). Let \(h \in G - \{e\} - \langle g \rangle \). Then the map \(\langle g \rangle \times \langle h \rangle \to G \) given by \((g^a, h^b) \mapsto g^ah^b \) gives an isomorphism. To show this, it suffices to show injectivity, which is true because \(g^ah^b = e \Rightarrow a = b = 0 \) since \(g \) and \(h \) are independent.

5. (10 points) It suffices to show that there are exactly two semi-direct products \(\mathbb{Z}/p\mathbb{Z} \rtimes \mathbb{Z}/q\mathbb{Z} \) arising from group homomorphisms \(\mathbb{Z}/p\mathbb{Z} \to Aut(\mathbb{Z}/q\mathbb{Z}) = (\mathbb{Z}/q\mathbb{Z})^\times \). It is shown in class that from the trivial homomorphism we get the direct product \(\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z} \), so we only consider the case of nontrivial homomorphisms.

Since \(p\mid q - 1 \), \((\mathbb{Z}/q\mathbb{Z})^\times \) has a subgroup of order \(p \). Giving a homomorphism between cyclic groups
amounts to specifying a generator of the target group, so there are $p - 1$ nontrivial homomorphisms $\phi : \mathbb{Z}/p\mathbb{Z} \to (\mathbb{Z}/q\mathbb{Z})^\times$. We show that the semidirect products that arise from any such ϕ, ψ are isomorphic. Let $f : \mathbb{Z}/p\mathbb{Z} \rtimes_\phi \mathbb{Z}/q\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z} \rtimes_\psi \mathbb{Z}/q\mathbb{Z}$ be given by $f((a, b)) = (a, \psi^{-1}\phi(b))$. The desired properties follow from the fact that ψ, ϕ are injective homomorphisms and are straightforward to check.