Final exam solution - Ma 5a, Caltech

Instructor: Alexander Yom Din

1. Let \(p \geq 5 \) be a prime.

(a) (5 pt) Show that \(S_p \) has a subgroup of index \(p \).

(b) (20 pt) Show that if \(S_n \) has a subgroup of index \(p \) (where \(n \geq 1 \) is an integer), then \(n = p \).

Solution:

(a) Consider \(H = \{ \sigma \in S_p \mid \sigma(p) = p \} \). The map \(H \to S_{p-1} \) given by \(\sigma \mapsto \sigma|_{\{1, \ldots, p-1\}} \) is clearly an isomorphism so, in particular, \(|H| = (p-1)! \). Thus \([S_p : H] = \frac{|S_p|}{|H|} = \frac{p!}{(p-1)!} = p \).

(b) Assume that \(S_n \) has a subgroup \(H \) of index \(p \). Clearly, \(n \geq p \geq 5 \) (because \(p = [S_n : H]|S_n| = n! \)). We claim now that the group \(S_n \) has a normal subgroup \(K \) of index \(k \) satisfying \(p \leq k \leq p! \). Indeed, we can take \(K \) to be the kernel of the left regular action map \(S_n \to S(S_n/H) \); We saw this in our study. But we saw in our study that the only normal subgroups of \(S_n \) are \(\{e\}, A_n, S_n \), so having index \(n! \), 2, 1 in \(S_n \) - thus the only possibility is that \(k = n! \), and this forces \(p! = n! \), which forces \(p = n \).

2. (25 pt) Let \(p > q \) be odd primes. Let \(G \) be a group of order \(p^nq^2 \) (where \(n \geq 0 \) is an integer). Show that \([G, G]\) is a \(p \)-group.

Solution:

Denote by \(n_p \) the number of \(p \)-Sylow subgroups of \(G \). We have \(p|n_p - 1 \) and \(n_p|q^2 \). The later condition gives \(n_p \in \{1, q, q^2\} \).

Let us show that \(n_p = 1 \). For this, we rule out \(n_p = q \) and \(n_p = q^2 \).\(n_p = q \) implies \(p|q - 1 \), which in its turn implies \(q > p \) - contradicting the given \(p > q \). \(n_p = q^2 \) implies \(p|q^2 - 1 = (q+1)(q-1) \) thus implying \(p|q-1 \) or \(p|q+1 \). \(p|q-1 \) was already ruled out. \(p|q+1 \) is also impossible.
- it would mean \(p \leq q+1 \) so we would have \(p-1 \leq q < p \), thus \(q = p-1 \), which is impossible since both \(p \) and \(q \) are odd.

Thus, we have \(n_p = 1 \). This means that \(G \) admits a unique \(p \)-Sylow subgroup \(P \), and \(P \) is normal in \(G \). Notice that \(G/P \) is a group of order \(q^2 \), and hence abelian as we studied. Thus, as we studied, \([G,G] \subset P\). So, since \(P \) is a \(p \)-group, so is \([G,G]\).

3. Let \(G \) be a group of order \(255 = 3 \cdot 5 \cdot 17 \).

 (a) \((13 \text{ pt})\) Let \(P \in Syl_{17}(G) \). Show that \(P \subset Z(G) \). Hint: First show that \(P \) is normal in \(G \), then try to think about the action of \(G \) on \(P \) by conjugation.

 (b) \((5 \text{ pt})\) Show that \(G/P \) is cyclic.

 (c) \((7 \text{ pt})\) Show that \(G \cong \mathbb{Z}/255\mathbb{Z} \).

Solution:

(a) Denoting by \(n_{17} \) the number of 17-Sylow subgroups in \(G \), the conditions \(17 | n_{17} - 1 \) and \(n_{17} | 15 \) clearly imply \(n_{17} = 1 \). Thus, \(P \) is a normal subgroup of \(G \). Consider the homomorphism \(G \to Aut(P) \) given by the conjugation action. Notice that \(P \), being a group of prime order 17, is isomorphic to \(\mathbb{Z}/17\mathbb{Z} \). Thus, as we have studied, \(Aut(P) \cong Aut(\mathbb{Z}/17\mathbb{Z}) \cong (\mathbb{Z}/17\mathbb{Z})^\times \) and so, in particular, \(|Aut(P)| = 16 \). Thus, \(|G| \) and \(Aut(P) \) are coprime. Thus, as we have studied, \(G \to Aut(P) \) must be the trivial homomorphism. This exactly means that \(P \subset Z(G) \).

(b) \(G/P \) is a group of order \(15 = 3 \cdot 5 \). By what we studied about groups of order \(pq \), since 3 does not divide \(5 - 1 \), this group is isomorphic to \(\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z} \), which in its turn is isomorphic, by the Chinese reminder theorem, to \(\mathbb{Z}/15\mathbb{Z} \), hence is cyclic.

(c) Since \(P \subset Z(G) \) and \(G/P \) is cyclic, \(G \) is abelian (Indeed, let \(g \) be a lift to \(G \) of a generator of \(G/P \). Then \(G = \langle g \cup P \rangle \), and since any two generators commute, so do any two elements of \(G \)). By our classification of abelian groups of finite order, clearly \(G \) has no choice but to be isomorphic to \(\mathbb{Z}/255\mathbb{Z} \).

4. (a) \((15 \text{ pt})\) Let \(A \) be an abelian group, and \(B \subset A \) a subgroup. Show that the quotient map \(A \to A/B \) splits if and only if there exists a subgroup \(C \subset A \) such that \(A = B \oplus C \).
(b) (10 pt) Let A be a finite abelian group, and $B \subset A$ a subgroup. Suppose that $gcd(|B|, |A/B|) = 1$. Show that the quotient map $A \to A/B$ splits (i.e., that there exists a homomorphism $s : A/B \to A$ such that $q \circ s = id$). Hint: Think about the primary decomposition.

Solution:

(a) This is a sketch - the student should formalize this in the language that he prefers.

Suppose that $A \to A/B$ splits. Then, as we studied, if we denote by C the image of a splitting homomorphism, we have $A = B \times C$. But in our abelian case, conjugation is trivial, and we obtain $A = B \times C$.

Suppose that $A = B \oplus C$ for some subgroup $C \subset A$. Then as we studied $A \to A/B$ splits (it is ”the same” as the epimorphism in the short exact sequence $0 \to B \to A \to C \to 0$...)

(b) As we studied, since $|B| \cdot |A/B|$ annihilates the whole of A, and $|B|, |A/B|$ are coprime, $A = A^{|B|} \oplus A^{|A/B|}$. Clearly $B \subset A^{|B|}$ by Lagrange’s theorem. But also $A^{|B|} \subset B$, because the projection $A^{|B|} \to A \to A/B$ is trivial (since the order of the source group is coprime to the order of the target group). Thus $B = A^{|B|}$. So we obtain $A = B \oplus A^{|A/B|}$, which shows that B admits a complement in A, and hence by part (a) that $A \to A/B$ splits.