Problem Set 2, Ma 001a-sec1, Fall 2016-17
Due 4 pm Monday October 10th

1. (20 points) Compute the following limit directly and interpret the final answer as a specific area:
\[
\lim_{n \to \infty} \sum_{i=1}^{n} \left(a + \frac{i(b-a)}{n} \right) \frac{3}{n} b - a.
\]

2. (10 points) Consider the functions \(f(x) = \sin(1/x) \) defined for \(x \neq 0 \). Show that it is not possible to define \(f(0) \) in a way that \(f \) becomes continuous at 0.

3. (20 points) Find the following limits and use the \(\varepsilon - \delta \) definition to show that your answer is correct

 (1) \(\lim_{x \to 0} x \sin \left(\frac{1}{x} \right) \)

 (2) \(\lim_{x \to a} \frac{x^n - a^n}{x-a} \), where \(n \) is a positive integer.

 (3) \(\lim_{x \to 0} \frac{1 - \sqrt{1-x^2}}{x^2} \)

 (4) \(\lim_{x \to a} \frac{\sqrt{x} - \sqrt{a}}{x-a} \), where \(a \) is a positive real number.

4. (10 points) If \(\lim_{x \to 0} \frac{f(x)}{x} = -5 \), find \(\lim_{x \to 0} f(x) \) and \(\lim_{x \to 0} \frac{f(x)}{x} \).

5. (20 points) Prove the following statements:

 (1) Assume that \(f : \mathbb{R} \to \mathbb{R} \) is a continuous function such that
 \(f(x+y) = f(x) + f(y) \), for any real numbers \(x, y \).
 Show that \(f(x) = cx \) for any real number \(x \), where \(c \) is a fixed constant.
 (Hint: prove it for rational numbers first.)

 (2) Assume that \(g : \mathbb{R} \to \mathbb{R} \) is a continuous function such that
 \(g \left(\frac{x+y}{2} \right) = \frac{g(x) + g(y)}{2} \), for any real numbers \(x, y \).
 Show that \(g(x) = cx + b \) for any real number \(x \), where \(c \) and \(b \) are fixed constants.

6. (20 points) Assuming that \(\lim_{x \to p} g(x) = B \neq 0 \), show that
 \[
 \lim_{x \to p} \frac{1}{g(x)} = \frac{1}{B}.
 \]