1. Let $G = (V, E)$ be a planar graph with $|V| \leq 11$. Prove that the vertices of G can be colored using four colors. You are not allowed to rely on the four color theorem.

2. Let \mathcal{P} be a set of n points in the plane, such that the distance between any two points of \mathcal{P} is at least 1. Prove that there must exist a set of $\lceil n/4 \rceil$ points $\mathcal{P}' \subset \mathcal{P}$, such that every two points of \mathcal{P}' are at a distance greater than one from each other (hint: Color the vertices of a graph).

3. Let $r_k = R(3, \ldots, 3; 2)$. Prove that for every $k \geq 3$, we have $r_k \leq k(r_{k-1} - 1) + 2$.

4. In class we proved that in any set of $R(m, 5; 4)$ points in the plane (with no three on a line) we can find the vertices of a convex m-gon. Prove that this is also the case for any set of $R(m, m; 3)$ points in the plane with no three on a line.

One way to solve the problem is to rely on the following. Let p_1, p_2, p_3 be three points in the plane, such that p_1 has the smallest x-coordinate, p_2 has the second smallest x-coordinate, and p_3 has the largest x-coordinate. We travel in a straight line from p_1 to p_2, and then in a straight line from p_2 to p_3. Notice that in this trip, when visiting p_2 we either perform a right turn or a left turn. An example is illustrated in the following figure.

Consider the points p_1, p_2, \ldots, p_k in the plane, also ordered in increasing x-coordinate values. What happens when for every $1 \leq i \leq k - 2$ the triple (x_i, x_{i+1}, x_{i+2}) forms a right turn?

5. Prove that every graph $G = (V, E)$ can be turned into a tripartite graph by removing at most $|E|/3$ of the edges of E. Use a probabilistic proof (a non-probabilistic proof may get zero points).

1Similarly to a bipartite graph, a tripartite graph has three vertex sets V_1, V_2, V_3 and no edges between vertices of the same set.