Ramsey Numbers (Special Case)

- p_1, \ldots, p_k – positive integers.
- The **Ramsey number** $R(p_1, \ldots, p_k; 2)$ is the minimum integer n such that for every coloring of the edges of K_n using k colors, at least one of the following subgraphs exists:
 - A K_{p_1} colored only with color 1.
 - A K_{p_2} colored only with color 2.
 - ...
 - A K_{p_k} colored only with color k.
An Example

- The expression $n = R(3,3,3,3; 2)$ means that every coloring of the edges of K_n using four colors contains a monochromatic triangle.

Another Example

- We already proved that $R(3,3; 2) = 6$.
- In the 6-people problem we proved that any coloring K_6 using two colors contains a monochromatic triangle.
 - This is not the case for K_5.
Recall: Asymptotic Bounds

- By using
 \[R(p_1, p_2) \leq R(p_1 - 1, p_2) + R(p_1, p_2 - 1) \]
 one can show that \(R(p, p) \leq c \frac{4^p}{\sqrt{p}} \) (for some constant \(c \)).

- We also proved \(R(p, p) > 2^{p/2} \).

Homogenous Subsets

- \(S \) – a set of “elements” (e.g., vertices).
 - For an integer \(1 \leq r \leq |S| \), we let \(\binom{S}{r} \) the set of all subsets of \(r \) elements of \(S \).
 - We give every subset of \(\binom{S}{r} \) a color.
 - We say that \(S' \subset S \) is \textit{i-homogeneous} if every subset of \(\binom{S'}{r} \) is of color \(i \).
Example: Subsets of Size 2

- When the subsets are of size two, this is equivalent to **coloring edges of a graph**.

![Graphs showing subsets of size 2](image)

General Ramsey Numbers

- r, p_1, \ldots, p_k – positive integers.
- The **Ramsey number** $R(p_1, \ldots, p_k; r)$ is the minimum integer n such that every coloring of $\binom{\{1, 2, \ldots, n\}}{r}$ using k colors yields an **i-homogeneous set of size p_i**, for some $1 \leq i \leq k$.
A Bit of Intuition

- If $r = 3$, we color triples of vertices.
 - Can be thought of as coloring the triangular faces of K_n.
 - We are looking for a large subset S of the vertices, such that each triangle that is spanned by three vertices of S has the same color.

![Monochromatic K_4](image)

The Case of Larger r

- We already know that $R(p_1, p_2; 2)$ is finite for any positive p_1 and p_2.
 - We now generalize this to the case of larger r.
- **Theorem.** For any positive integers r, p_1, p_2, the Ramsey number $R(p_1, p_2; r)$ is finite.
What Do We Need to Prove?

- For any positive integers \(r, p_1, p_2, \) we need to prove that there exists \(n \) such that every coloring of the \(r \)-tuples of a set of size \(n \) in red and blue contains:
 - Either a subset of \(p_1 \) elements such that every \(r \)-tuple in it is red,
 - or a subset of \(p_2 \) elements such that every \(r \)-tuple in it is blue.

Proof

- We use a \textit{double induction}.
 - We prove the theorem by induction on \(r \).
 - We prove the induction step using an induction on \(p_1 + p_2 \).

- Induction basis (on \(r \)).
 - \textbf{When} \(r = 1 \), we can simply take \(p_1 + p_2 - 1 \) elements.
 - We already proved the case of \(r = 2 \).
Induction Step

- We prove the induction step for a given value of r by induction on $p_1 + p_2$.
 - **Induction basis.** If $p_1 < r$ or $p_2 < r$ then the claim vacuously holds for sets of p_i elements and no r-tuples.
 - **Induction step.** We set $q_1 = R(p_1 - 1, p_2; r)$, $q_2 = R(p_1, p_2 - 1; r)$, and $n = 1 + R(q_1, q_2; r - 1)$.
 - By the hypotheses, q_1, q_2, and n are finite.

Proof (cont.)

$$q_1 = R(p_1 - 1, p_2; r), \quad q_2 = R(p_1, p_2 - 1), \quad n = 1 + R(q_1, q_2; r - 1).$$

- Let S be a set of n elements, with every r-tuple colored either red or blue.
 - Pick an element $x \in S$ and let $S' = S \setminus \{x\}$.
 - We color an $(r - 1)$-tuple $T \subset S'$ using the same color as the r-tuple $T \cup \{x\}$.
 - Since $|S'| = n - 1 = R(q_1, q_2, r - 1)$, there is either a red subset of q_1 elements (with respect to the colors of the $(r - 1)$-tuples), or a blue subset of q_2 elements.
Completing the Proof

\[q_1 = R(p_1 - 1, p_2; r), \quad q_2 = R(p_1, p_2 - 1), \]
\[n = 1 + R(q_1, q_2, r - 1). \]

- \(S \) – a set of \(n \) elements. \(S' = S \setminus \{x\} \).
- WLOG, we assume that there is a red subset \(S_r \) of \(q_1 \) elements (with respect to \((r - 1)\)-tuples).
- We consider the \(r \)-tuples of \(S_r \). Since \(|S_r| = q_1 = R(p_1 - 1, p_2; r)\), either there is a blue subset of size \(p_2 \), or a red subset of size \(p_1 - 1 \).
- In the latter case, by adding \(x \) to the subset, we obtain a red subset of size \(p_1 \).

Ramsey’s Theorem

- A straightforward extension of the proof yields a more general result.
- **Theorem.** For any positive integers \(r, p_1, \ldots, p_k \), the Ramsey number \(R(p_1, \ldots, p_k; r) \) is finite.
 - One way to think of the theorem: in every sufficiently large arbitrary object (i.e., an arbitrary coloring) there must be some order (i.e., a monochromatic subset).
Some History

- In the early 1930’s in Budapest, a few students used to regularly meet on Sundays in a specific city park bench.
- Among the participants were Paul Erdős, George Szekeres, and Esther Klein.
- Klein told the group that for any set of five points with no three on a line, four of the points are the vertices of a convex quadrilateral.

- The **convex hull** of a point set S is the smallest convex polygon that contains S.
- Given a set of five points:
 - If the convex hall of the point set has at least four points in it, then we are done.
 - If the convex hull consists of three points, we consider the line ℓ that passes through the two interior points.
 - We take the two interior points and the two points that are on the same side of ℓ.
The Story Continues

- The Budapest students started to think about whether there exists an n such that every set of n points with no three on a line contains the vertices of a convex pentagon.
 - More generally, does a similar condition hold for every convex k-gon?

The Happy Ending Problem

- Even though Erdős was part of the group, the first to prove the claim was Szekeres.
- A couple of years later, Esther Klein, who suggested the problem married George Szekeres who solved it.
 - Since then, this problem is called "the happy ending problem".
 - They lived together up to their 90’s.
The Theorem

- **Theorem.** For every integer \(m \geq 3 \), there exists an integer \(N(m) \) such that any set of \(N(m) \) points with no three on a line contains a subset of \(m \) points that are the vertices of a convex \(m \)-gon.

First Claims

- **Straightforward claim.** Any four vertices of a convex \(n \)-gon span a convex quadrilateral.
- **Less straightforward claim.** If every four vertices of an \(n \)-gon \(P \) form a convex quadrilateral, then \(P \) is convex.
Proving the Claim

- **Claim.** If every four vertices of an \(n \)-gon \(P \) form a convex quadrilateral, then \(P \) is convex.

- **Proof.** Assume *for contradiction* that \(P \) is not convex.
 - There is a vertex \(v \) that is not in the convex hull of the vertices of \(P \).
 - Triangulate the convex hull of \(P \).
 - \(v \) together with the three vertices of the triangle containing \(v \) do not span a convex quadrilateral!

Proving the Theorem

- Set \(N(m) = R(m, 5; 4) \).
 - Given a set of \(N(m) \) points with no three on a line, we color every 4-tuple of points.
 - A 4-tuple is colored *red* if it spans a convex quadrilateral, and otherwise *blue*.
 - By Ramsey’s theorem, either there is a *red subset of size* \(m \) and or *blue one of size* 5.
 - But we proved that for any 5 points there must be a convex (=red) quadruple!
 - Thus, there is a *red* subset of size \(m \), and by the previous claim it spans a convex \(m \)-gon.
The Erdős-Szekeres Conjecture

- In the 1930’s, Erdős and Szekeres proved \(2^{m-2} + 1 \leq N(m) \leq \left(\frac{2m-4}{m-2} \right) + 1 \).
- In 2005, Tóth and Valtr improved this to \(N(m) \leq \left(\frac{2m-5}{m-2} \right) + 1 \).
- Conjecture (Erdős and Szekeres).
 \[N(m) = 2^{m-2} + 1. \]
 - Using computers, this was verified for \(m \leq 6 \).

Frank P. Ramsey

- Died in 1930 at the age of 26. By then, he:
 - Wrote mathematical papers, including getting a whole subfield named after him.
 - Wrote several philosophical works. Wittgenstein mentions him in the introduction to his *Philosophical Investigations* as an influence.
 - Wrote several economics papers, as a student to John Maynard Keynes.
 - Had a wife, kids, etc.
Graph Ramsey Theory

- So far we looked for monochromatic copies of some K_m in colorings of K_n.
 - Searching monochromatic copies of other types of graphs has also been studied.
 - Given two graphs G_1, G_2, we denote by $R(G_1, G_2)$ the minimum number n such that every coloring of K_n contains either a blue copy of G_1 or a red copy of G_2.

Example.
- P_m – a graph that is a path of length m.
- Then $R(P_2, P_2) = 3$.

The Case of a Tree

- **Theorem.** Let T be a tree with m vertices. Then $R(T, K_n) = (m - 1)(n - 1) + 1$.
- **Proof.** We begin with a lower bound.
 - Consider $n - 1$ copies of K_{m-1} colored completely in blue. Edges between vertices of different copies are colored red.
 - This is a set of $(m - 1)(n - 1)$ vertices containing no red K_n and no blue T.
 - Thus, $R(T, K_n) > (m - 1)(n - 1)$.
Proof: Upper Bound

• **Claim.** Let T be a tree with m vertices. Then $R(T, K_n) = (m - 1)(n - 1) + 1$.

• **Proof.** We prove the upper bound by induction on $m + n$.
 - **Induction basis:** if $m = 1$ or $n = 1$, the claim obviously holds.
 - **Induction step:** Set $N = (m - 1)(n - 1) + 1$. Consider a coloring of K_N and a vertex v.
 - If v is incident to more than $(m - 1)(n - 2)$ red edges, by the hypothesis, either the neighbors span a blue T or v and its neighbors span a red K_n.

Proof: Upper Bound (cont.)

• We set $N = (m - 1)(n - 1) + 1$.

• If any vertex is incident to more than $(m - 1)(n - 2)$ red edges, we are done.

• Assume that every vertex is incident to at most $(m - 1)(n - 2)$ red edges.

• That is, every vertex is adjacent to at least $m - 1$ blue edges.

• In the first assignment, we proved that any graph with minimum degree at least $m - 1$ contains every tree with m vertices.
Copies of Triangles

- We denote as mK_3 a set of m disjoint copies of K_3.

Theorem. $R(mK_3, mK_3) = 5m$, for every $m \geq 2$.

Proof. We begin with the lower bound.

- Consider a red K_{3m-1} and another red $K_{1,2m-1}$. Every other edge in the graph is blue.
- There are $5m - 1$ vertices, with $m - 1$ disjoint red triangles and $m - 1$ disjoint blue triangles.
- Thus, $R(mK_3, mK_3) > 5m - 1$.

Illustration
Proof: Upper Bound

- **Theorem.** $R(mK_3, mK_3) = 5m$, for $m \geq 3$.

- **Proof.** We prove an upper bound by induction on m.

 - **Induction basis.** The case of $m = 2$ is **not trivial**, but we will not do it.

 - **Induction step.** Consider a coloring of K_{5m}.

 - We repeatedly look for a monochromatic triangle and remove its vertices from the graph.

 - Since $R(3,3) = 6$, this process continues as long as at least six vertices remain.

 - Since $5m - 3m \geq 6$ for $m \geq 3$, we have at least m disjoint monochromatic triangles.

Proof: Upper Bound (cont.)

- We consider a coloring of K_{5m} and find m monochromatic triangles in it.

- If all triangles are of the same color, we are done. Thus, assume that we have a red triangle Δabc and a blue triangle Δdef.

- WLOG, assume that at least 5 of the 9 edges between the two triangles are red.

- WLOG, assume that two of these 5 edges meet in d. We thus have a red triangle and a blue triangle with a common vertex d.

![Diagram](image)
Proof: Upper Bound (cont.)

- We consider a coloring of K_{5m}.
- It remains to consider the case of a red triangle and a blue triangle have a common vertex.
- By the induction hypothesis, the remaining $5m - 5$ vertices contain $m - 1$ disjoint triangles of the same color.
- By adding one of the two triangles, we obtain m triangles of the same color.

The End