Recall: Plane Graphs

- A plane graph is a drawing of a graph in the plane such that the edges are non-crossing curves.
Recall: Planar Graphs

- The drawing on the left is not a plane graph. However, on the right we have a different drawing of the same graph, which is a plane graph.
- An abstract graph that can be drawn as a plane graph is called a planar graph.

Non-Planar Graphs

- Recall. We proved that K_5 and $K_{3,3}$ are not planar.
 - Thus, every graph that contains K_5 or $K_{3,3}$ as a subgraph is also not planar.
 - Are there graphs that do not contain K_5 and $K_{3,3}$ as subgraphs, and are not planar?
 - Yes, and we can use K_5 and $K_{3,3}$ to generate them.
More Non-Planar Graphs

- **Subdividing edges** of \(K_5 \) or \(K_{3,3} \) cannot make them planar.
 - If we have a plane drawing after the subdivision, the same drawing works for the original graph.

Reminder: Topological Minors

- A graph \(H \) is a *topological minor* of a graph \(G \) if \(G \) contains a subdivision of \(H \) as a subgraph.
Kuratowski's Theorem

- **Theorem.** A graph is planar if and only if it does not have K_5 and $K_{3,3}$ as topological minors.
 - We know that if a graph contains K_5 or $K_{3,3}$ as a topological minor, then it is not planar.
 - It remains to prove that every non-planar graph contains such a topological minor.

Kazimierz Kuratowski

Minimal Non-planar Graph

- A **minimal non-planar graph** is a non-planar graph G such that any proper subgraph of G is planar.
- What minimal non-planar graphs can you think of?
 - K_5 and $K_{3,3}$.

![Diagram of minimal non-planar graphs](image)
Kuratowski Subgraphs

- Given a graph G, a Kuratowski subgraph of G is a subgraph that is a subdivision of K_5 or of $K_{3,3}$.

Proof Strategy

- To prove Kuratowski's theorem, we need to prove that every non-planar graph contains a Kuratowski subgraph.
 - It suffices to prove this only for minimal non-planar graphs.
- Strategy:
 - Show that every minimal non-planar graph with no Kuratowski subgraph must be 3-connected.
 - Then show that every 3-connected graph with no Kuratowski subgraph is planar.
Choosing the Unbounded Face

- **Lemma.** Let G be a planar graph, and let F be a set of edges that form the **boundary of a face** in an embedding of G. Then there exists a non-crossing drawing of G where F is the **boundary of the unbounded face**.

Proof

- We draw the graph on a sphere, and then **project it from a point on the face** f.
 - In the projection on the plane, f will be the unbounded face.
Bad Math Joke #1

- Q: What do you call a young eigensheep?
- A: A lamb, duh!

Connectedness of Minimal Non-planar Graphs

- **Claim.** A minimal non-planar graph must be 1-connected.
 - Assume for contradiction that there exists a minimal non-planar graph G that is not connected.
 - Let C be one connected component of G.
 - By the minimality of G, both C and $G - C$ are planar.
 - But then we can draw C and then draw $G - C$ inside one of its faces. **Contradiction!**
2-Connectedness

- **Claim.** A minimal non-planar graph must **2-connected**.
 - Assume for contradiction that there exists a minimal non-planar graph $G = (V, E)$ that is not 2-connected.
 - There exists a vertex v whose removal disconnects G.
 - Let C be a component of $G - v$.
 - By the minimality of G, the induced subgraph on $C \cup \{v\}$ and $(V \setminus C) \cup \{v\}$ are both planar.
 - We can embed both graphs with v on the unbounded face, and merge both copies of v.

Illustration
Preparing for 3-Connectedness

- **Claim.** Let $G \in (V, E)$ be a non-planar graph and let $x, y \in V$, such that $G - \{x, y\}$ is disconnected. Then there is a component C of $G - \{x, y\}$ such that the induced subgraph on $C \cup \{x, y\}$ with the edge (x, y) is non-planar.

![Graph Diagram]

Proof

- C_1, \ldots, C_k – the components of $G - \{x, y\}$.
- G_i' – the induced subgraph on $C_i \cup \{x, y\}$, plus the edge (x, y).
- Assume **for contradiction** that G_1', \ldots, G_k' are all planar.
 - H_1 – a plane drawing of G_1'.
 - H_i (for $2 \leq i \leq k$) – drawing G_i' (without crossings) in a face of H_{i-1} with (x, y) on its boundary, and merging the two copies of x, y.
 - Each H_i is planar, including $H_k = G$.

 Contradiction!
Bad Math Joke #2

• **Q:** What do you get when you cross a mountain goat and a mountain climber?
• **A:** Nothing—you can’t cross two scalars.

3-Connectedness

• **Lemma.** Let \(G = (V, E) \) be a graph with fewest edges among all non-planar graphs without a Kuratowski subgraph. Then \(G \) is 3-connected.

• **Proof.**
 ◦ \(G \) is obviously a minimal non-planar graph.
 ◦ By a previous lemma, \(G \) is 2-connected.
 ◦ We need to prove that there are no vertices \(x, y \in V \) such that \(G - \{x, y\} \) is disconnected.
Proof

- Assume for contradiction that there exist \(x, y \in V \) such that \(G - \{x, y\} \) is disconnected.
 - \(C_1, \ldots, C_k \): the components of \(G - \{x, y\} \).
 - By the previous lemma, there exists \(C_i \) such that the induced subgraph on \(C_i \cup \{x, y\} \) plus the edge \((x, y)\) is non-planar. Denote it as \(H \).
 - By the minimality of \(G \), \(H \) contains a Kuratowski subgraph \(K \).
 - Since \(G \) does not contain \(K \), it must be that \((x, y) \in K\) and \((x, y) \notin E\).

Proof (cont.)

- Let \(C' \) be another connected component of \(G - \{x, y\} \).
- In \(G \) there is a path \(P \) between \(x \) and \(y \) that uses only vertices of \(C' \).
- Combining \(P \) with the other edges of \(K \) yields a Kuratowski subgraph of \(G \). **Contradiction!**
Recap

• We proved that a smallest non-planar graph without a Kuratowski subgraph is 3-connected.
 ◦ To complete the proof of Kuratowski’s Theorem, we prove that every 3-connected graph without a Kuratowski subgraph is planar.

Bad Math Joke #3

• Q: What do you get if you cross an elephant and a banana?
• A: $|\text{elephant}| \cdot |\text{banana}| \cdot \sin \theta$.
Contraction Cannot Generate Kuratowski Subgraphs

- **Lemma.** Let $G = (V, E)$ be a graph with no Kuratowski subgraph. Then **contracting any edge** $e \in E$ does not result in a Kuratowski subgraph.

- **Proof.**
 - G_e – the graph that is obtained by contracting $e = (x, y)$ in G.
 - Assume **for contradiction** that G_e contains a Kuratowski subgraph H.

Proof

- v_e – the vertex in G_e that is obtained by contracting $e = (x, y)$.
- If v_e is not in H, then H is also a subgraph of G. **Contradiction!**
- v_e cannot have degree zero or one in H.
- If v_e has degree two in H, we can find H in G by replacing v_e with x and/or y. **Contradiction!**
Proof (cont.)

- Consider the case where v_e has degree $d_v \geq 3$ in H, and after expanding e back x (or y) is of degree $\geq d_v$ in G.
 - Then H is also in G with x replacing v_e and y being a subdivision vertex. **Contradiction!**

- A single case remains: H is a subdivision of K_5 and after expanding e back both x and y are of degree 3.
 - In this case G contains $K_{3,3}$. **Contradiction!**
 - In the figure, we have y, a, b on one side and x, c, d on the other.
Contractions and 3-Connectivity

- **Lemma.** Let $G = (V, E)$ be a 3-connected graph with $|V| \geq 5$. Then there exists an edge $e \in E$ whose contraction results in a 3-connected graph.

Proof

- Assume for contradiction that there exists a 3-connected $G = (V, E)$ with $|V| \geq 5$, such that contracting any $e \in E$ yields a graph G_e that is not 3-connected.
 - For any $e \in E$, let v_e denote the vertex of G_e to which e is contracted.
 - Since G_e is not 3-connected, there exists $z_e \in V$ such that $G_e - \{v_e, z_e\}$ is disconnected.
Proof (cont.)

- Every \(e = (x, y) \in E \) has \(z_e \in V \) such that:
 - \(G_e - \{v_e, z_e\} \) is disconnected.
 - \(G - \{x, y, z_e\} \) is disconnected.

- We choose an edge \(e = (x, y) \) so that the size of the largest component \(C \) of \(G - \{x, y, z_e\} \) is maximized.
- Another component of \(G - \{x, y, z_e\} \).
- There must be an edge \(f \) between \(z_e \) and a vertex \(u \in C' \).

Proof (cont.)

- Let \(C' \) be another component. There is an edge \(f \) between \(z_e \) and a vertex \(u \in C' \).
 - By definition, \(G - \{z_e, u, z_f\} \) is disconnected.
 - The induced subgraph of \(C \cup \{x, y\} \) is connected. Also, deleting \(z_f \) from this subgraph cannot disconnect it, since this would imply that \(G - \{z_e, z_f\} \) is disconnected (but \(G \) is 3-connected!).
 - So \(G - \{z_e, u, z_f\} \) is disconnected and contains a component larger than \(C \).

Contradiction!
The End

- A physicist and a mathematician are sitting in a faculty lounge. Suddenly, the coffee machine catches on fire. The physicist grabs a bucket and leaps toward the sink, fills the bucket with water, and puts out the fire.

- Another day, and the same two sit in the same lounge. Again the coffee machine catches on fire. This time, the mathematician stands up, gets a bucket, and hands the bucket to the physicist, thus reducing the problem to a previously solved one.