Recall: k-connected Graphs

- A graph $G = (V, E)$ is said to be k-connected if $|V| > k$ and we cannot obtain a non-connected graph by removing $k - 1$ vertices from V (together with their adjacent edges).

- Is the graph in the figure
 - 1-connected? Yes.
 - 2-connected? Yes.
 - 3-connected? No!
Recall: Connectivity

- Which graphs are 1-connected?
 - These are the connected graphs ($|V| > 1$).
- The connectivity of a graph G is the maximum k such that G is k-connected.
- What is the connectivity of the complete graph K_n? $n - 1$.
- The graph in the figure has a connectivity of 2.

1- and 2-Connected Graphs

- We characterized all of the graphs that are 1-connected.
 - These are exactly the connected graphs.
- Can we characterize all of the graphs that are 2-connected?
 - What is the simplest type of 2-connected graphs? Cycles.
G-paths

- Given a graph G, a **G-path** is a path that meets G only at its endpoints.

2-connected Graphs

- **Theorem.** A graph is 2-connected if and only if it can be constructed by repeatedly adding G-paths to a cycle.

- **Proof (easy direction).**
 - If a graph was built by repeatedly adding G-paths to a cycle, it cannot be disconnected by removing one vertex.
The Other Direction

- Assume **for contradiction** that a 2-connected graph $G = (V, E)$ cannot be obtained by repeatedly adding C-paths to a cycle C.

- **There is a cycle C in G.**
 - Otherwise, G is a spanning tree, and is obviously not 2-connected.

- **We repeatedly add C-paths** to C using edges of G, until no such paths remain.
 - By definition, we obtain a subgraph $G' \subset G$.

Completing the Proof

- G – 2-connected graph that cannot be obtained by adding C-paths to a cycle C.
- $G' \subset G$ – a **maximal** subgraph that can be obtained by adding C-paths to cycle C.
 - **Since G is connected**, there is a vertex $v \in V$ that is connected by an edge to a vertex of G'.
 - **Since G is 2-connected**, there must be another path between v and G'.
 - **Contradicting the maximality of G'.**
Blocks

- **Recall.** Any graph can be decomposed into maximal connected components.

- A **block** is a maximal subgraph that is 2-connected.
 - Can we decompose every graph into blocks?

* The correct definition is 3 slides ahead.

Block Properties

- Can two blocks share a vertex? **Yes**

- Can two blocks share two vertices? **No**
 - Let B_1, B_2 be two blocks with at least two common vertices.
 - If we remove a vertex of B_1 from $B_1 \cup B_2$, by definition B_1 remains connected, and it also remains connected to B_2.
 - We cannot disconnect $B_1 \cup B_2$ by removing one vertex, so it is one big block.
The Decomposition

- **We decompose a graph into blocks.** Does every edge belong to block? **No**
 - We refer to edges between blocks as **bridges**.
 - We **extend the definition of a block** so that a bridge is also considered as a block.

The Accurate Definition of a Block

- A **block** is a maximal subgraph that cannot be disconnected by removing one vertex.

* We did not define whether an isolated vertex is a block, and this is just a matter of definition.
st-disconnecting Set

- Consider a graph $G = (V, E)$ and $s, t \in V$.
 - An **st-disconnecting set** is a subset $S \subset V \setminus \{s, t\}$ whose removal disconnects G, such that s and t are in different components.

![Graph Illustration](image)

Menger’s Theorem

- **Theorem (1927).** Consider a graph $G = (V, E)$ and vertices $s, t \in V$ such that $(s, t) \notin E$. Then the size of the smallest **st-disconnecting set** equals to the maximum number of **vertex-disjoint** paths between s and t.

![Graph Illustration](image)
Proof

- \(k_{\text{path}}\) – maximum number of vertex disjoint paths.
- \(k_{\text{disc}}\) – minimum size of an \(st\)-disconnecting set.

We have \(k_{\text{disc}} \geq k_{\text{path}}\) since every \(st\)-disconnecting set must contain a vertex from every path.

We prove \(k_{\text{disc}} \leq k_{\text{path}}\) by induction on \(|V|\).

- **Induction basis.** When \(|V| = 2\), we have \(k_{\text{disc}} = k_{\text{path}} = 0\)

Induction Step

- \(N(s)\) – the set of neighbors of \(s\) in \(G\).
 - Notice that \(N(s)\) disconnects \(s\) from \(t\), and so does \(N(t)\).

- We partition the analysis of the induction step into two cases:
 - There exists a minimum-sized \(st\)-disconnecting set \(D\) such that \(D \neq N(s)\) and \(D \neq N(t)\).
 - Every minimum-sized \(st\)-disconnecting set is either \(N(s)\) or \(N(t)\) (one of these two sets might not be minimal).
The First Case

- Assume that there exists a minimum-sized st-disconnecting set D such that $D \neq N(s)$ and $D \neq N(t)$.
 - Removing D disconnects G into several components.
 - C_s - the component containing s.
 - C_t - the component containing t.
 - How can we use the induction hypothesis?

The First Case (cont.)

- G_s - the induced graph on $C_s \cup D$.
 - We add a vertex t' to G_s and edges between t' and every vertex of D.
 - Since D is an st-disconnecting set of G, it is also an st'-disconnecting set of G_s.
 - By the hypothesis, there are $|D| = k_{\text{disc}}$ vertex-disjoint paths from s to t'.
Completing the First Case

- We have a set of vertex disjoint paths from s to each of the k_{disc} vertices of D.
- Similarly, we have a set of vertex disjoint paths from each of the k_{disc} vertices of D to t.
 - Combining the two yields a set of k_{disc} vertex disjoint paths from s to t.
 - That is, $k_{disc} \leq k_{path}$, completing the proof in this case.

The Second Case

- Assume that every minimum-sized st-disconnecting set is either $N(s)$ or $N(t)$.
 - That is, $v \in V \setminus (\{s, t\} \cup N(s) \cup N(t))$ is not in any minimum-sized st-disconnecting set.
 - By removing such a vertex v, we obtain a graph G', also with a minimum st-disconnecting set of size k_{disc}.
 - By the hypothesis, G' contains k_{disc} vertex-disjoint paths between s and t, and these are also vertex disjoint paths in G.

A Missing Case

- What is still missing in case 2?
 - What if there is no vertex \(v \in V \setminus (\{s, t\} \cup N(s) \cup N(t)) \)?
 - Let \(C = N(s) \cap N(t) \), \(N_s = N(s) \setminus C \), and \(N_t = N(t) \setminus C \).
 - Any disconnecting set must contain \(C \), which also corresponds to \(|C| \) paths of the form \(s \to v \to t \), where \(v \in C \).
 - Each of the other \(k_{\text{disc}} - |C| \) vertices of the minimum disconnecting set is either in \(N_s \) or \(N_t \).

Completing the Missing Case

- Let \(C = N(s) \cap N(t) \), \(N_s = N(s) \setminus C \), and \(N_t = N(t) \setminus C \). Consider the bipartite subgraph on \(N_s \cup N_t \) (removing edges between vertices of the same side).
- The minimum disconnecting set contains \(k_{\text{disc}} - |C| \) vertices in this subgraph. These vertices form a **minimum vertex cover**.
Recall: König’s Theorem

- **Theorem.** Let $G = (V_1 \cup V_2, E)$ be a bipartite graph. Then the size of a maximum matching of G is equal to the size of a minimum vertex cover of G.

Using Vertex Covers

- Since G' has a minimum vertex cover of size $k_{\text{disc}} - |C|$, it has a matching A of the same size.
 - Each matching edge corresponds to a path $s \rightarrow v \rightarrow u \rightarrow t$ ($v \in N_s$ and $u \in N_t$).
 - These paths are vertex disjoint, so we again have at least k_{disc} vertex-disjoint paths.
Conclusions

• **Menger’s theorem** yields an alternative definition of k-connectedness.
 - **Original definition.** A graph $G = (V, E)$ is said to be k-connected if $|V| > k$ and we cannot obtain a non-connected graph by removing $k - 1$ vertices from V.
 - **Equivalent definition.** A graph $G = (V, E)$ is said to be k-connected if $|V| > k$ and between any two vertices $s, t \in V$ there are at least k vertex-disjoint paths.

Verifying k-Connectivity

• **Problem.** Given a graph $G = (V, E)$ and an integer $k > 0$, describe an algorithm for checking whether G is k-connected.
Solution

- For every pair of vertices $s, t \in V$, we check whether there are $\geq k$ vertex-disjoint paths between s and t.
 - G is k-connected if and only if all of the $\binom{|V|}{2}$ checks pass.
- How can we check whether there are k vertex-disjoint paths between s and t?
 - We did this in 6a using flow networks.

Building a Flow Network

- A quick reminder from 6a:
 - The source is s. The sink is t.
 - The capacities are all 1.
 - We split every edge into a pair of anti parallel edges.
 - **We split every $v \in V$ into v_{in} and v_{out}**.
More Efficient

- We showed how to check whether a graph is k-connected by finding maximum flow in $|V| \choose 2$ flow networks.
- By more involved argument, it suffices to find $|V| - 1$ maximum flows.

The End

ANSWER: natural selection

WAIT! THAG CALCULATES SHORTEST DISTANCE TO LOCATION MAXIMIZING PROBABILITY OF SURVIVAL.

THAG MAKE FIRE.

THAG INVENT WHEEL.

NOW THAG WILL...

SABERTOOTH!

$L = \int_c^x \sqrt{1 + y'^2} \, dx$

$\frac{\partial F}{\partial y} - \frac{\partial}{\partial x} \frac{\partial F}{\partial y'} = 0$

QUESTION: Why are there so many more jocks than nerds in the world today?