Problem 1 (12.1.2).

Proof. (a) Let \(\varphi : N \to R^n \) sending \(\sum r_i x_i \mapsto (r_i) \). Since the \(x_i \)'s are linearly independent and generate \(N \), every element of \(N \) can be uniquely written as \(r_1 x_1 + \ldots + r_n x_n \). Hence \(\sum r_i x_i = \sum r'_i x_i \) implies \(r_i = r'_i \) and thus \(\varphi \) is well-defined. Surjectivity is clear. Since \(\ker \varphi = \{0\} \), \(\varphi \) is bijective.

Let’s show now that \(M/N \) is torsion. Let \(y + N \) be any non-zero coset. The set \(\{y, x_1, \ldots, x_n\} \) must be linearly dependent since the \(x_i \)'s are assumed to form a maximal set of linearly independent elements of \(M \).

Thus there exist \(r, r_i \in R \) such that \(r y + r_1 x_1 + \ldots + r_n x_n = 0 \). This means \(r(y + N) = 0 \) in \(M/N \). Since this is true (with possibly different \(r \)'s) for all non-zero cosets \(y + N \) of \(M/N \), we conclude that \(M/N \) is torsion.

(b) Clearly the rank of \(M \) is at most \(n \). Let \(\{y_1, \ldots, y_{n+1}\} \) be an arbitrary set of \(n + 1 \) distinct elements in \(M \). Since \(M/N \) is a torsion module, there exist \(r_i \in R \) with \(r_1 y_1 + \ldots + r_{n+1} y_{n+1} \in N \). The elements \(r_i y_i \) are \(n + 1 \) elements in \(N \), and since \(N \) has rank \(n \), there is some linear combination of the \(r_i y_i \)'s equal to 0. This can be viewed as a linear combination of the \(y_i \)'s, showing that the \(y_i \)'s are linearly dependent. Thus every set consisting of \(n + 1 \) elements of \(M \) is linearly dependent, hence \(M \) has rank \(n \).

\[\square \]

Problem 2 (12.1.5).

Proof. \((-x) \cdot 2 + 2 \cdot x = 0 \). So \(\{2, x\} \) is not linearly independent, hence is not a basis for \(M \).

For any \(a, b \in M \) we have \((-a)b + b \cdot a = 0 \), which means that \(a \) and \(b \) are linearly dependent. Thus \(M \) has rank 1. If \(M \) were free of rank 1, there would exist \(m \in M \) such that \(M = Rm \). But then there would exist \(r, r' \in R \) such that \(2 = rm \) and \(x = r'm \). Then \(m|2 \) and \(m|x \) in \(R \), which would imply \(m = \pm 1 \notin M \).

\[\square \]

Problem 3 (12.1.16).

Proof. Let \(\{x_1, \ldots, x_n\} \) be a set of generators for \(M \). Consider \(R^n \) with basis \(e_i \) (so \(e_i = (0, \ldots, 0, 1, 0, \ldots, 0) \) with 1 in \(i \)th position) and \(R \)-module homomorphism \(R^n \to M \) sending \(e_i \mapsto x_i \). This is clearly surjective, since any element of \(M \) can be written as \(\sum r_i x_i \), and the elements \((r_1, \ldots, r_n) \in R^n \) then maps to \(\sum r_i x_i \).

Conversely if such a surjective homomorphism exists, then the images of the \(e_i \)'s form a set of generators for \(M \).

(a) If \(M \) is finitely generated, then there is \(n \) and a surjective homomorphism \(\varphi : R^n \to M \). Composing with the surjective map \(M \to N \), this yields a surjective homomorphism \(R^n \to N \), and by the above this implies that \(N \) is finitely generated.

(b) \(R = \mathbb{Q}[x_1, \ldots, x_n, \ldots] \) is clearly finitely generated as an \(R \)-module (with generator 1). Consider the submodule (ideal) \(I = (x_1, \ldots, x_n, \ldots) \). Assume \(I \) is finitely generated, say by polynomials \(p_1, \ldots, p_m \). Each \(p_i \) involves finitely many of the variables \(x_j \). Hence all \(p_i \)'s collectively can only involve variables \(x_1, \ldots, x_N \) for some fixed large enough \(N \).

By assumption \(x_{N+1} \) is an \(R \)-linear combination of the \(p_i \)'s, so in particular, an \(R \)-linear combination of \(x_1, \ldots, x_N \). Write \(x_{N+1} = x_1 f_1 + \ldots + x_N f_N \). Evaluate this at \(e_{N+1} \) which consists of 0 in every position except 1 in position \(N + 1 \). The LHS is then simply 1, while the RHS is 0. Contradiction.
Problem 4.

Proof. The matrix A defines a map $F^n \to F^n$ which clearly extends the map $R^n \to R^n$.

If $(\det A) \not= 0$, then A is injective as a map $F^n \to F^n$. In particular then A is injective as a map restricted to R^n.

Conversely, if A is injective as a map $R^n \to R^n$, then the induced map $A : F^n \to F^n$ is injective, so $\det A \not= 0$ (from linear algebra).

Assume not $\det A$ is a unit. In particular, $\det A \not= 0$ and A is injective. We have to verify surjectivity. The adjoint matrix A^* has entries equal to determinants of submatrices of A, hence has entries in R. Recall that $AA^* = (\det A)I_n$. If $\det A$ is a unit, it follows that A is invertible and the inverse matrix A^{-1} has entries in R. Thus for any $y \in R^n$ we have $A(A^{-1}y) = y$ and $A^{-1}y \in R^n$, thus the map $A : R^n \to R^n$ is bijective.

If A is bijective as a map $R^n \to R^n$, then it is bijective as a map $F^n \to F^n$ hence $\det A$ is a unit (from linear algebra).

Problem 5.

Proof. (1) Yes. Let I be a maximal ideal of R. Consider the submodule $IM = \{a_1m_1 + \ldots + a_nm_n \mid a_i \in I, \ m_i \in M\}$. Then M/IM is a vector space over R/I, which is a field since I is maximal.

Now if $B = \{x_1, \ldots, x_n\}$ is a basis of M, consider $B + IM \subset M/IM$. Since B spans M, $B + IM$ spans M/IM. Indeed if $m + IM \in M/IM$, then write $m = \sum r_ix_i$ (we can do this since $\{x_i\}$ is a basis for M), then $m + IM = \sum (r_i + I)(x_i + IM)$.

Suppose now $\sum_{i=1}^n (r_i + I)(x_i + IM) = IM$. Then $\sum_{i=1}^n r_ix_i \in IM$, hence $\sum r_ix_i = \sum a_ix_i$ for some $a_i \in I$.

From the linear independence of B we conclude $r_i = a_i \in I$, so $r_i + I = I$. Thus $B + IM$ is a basis for M/IM as a R/I-vector space. But then for any basis B, the set $B + IM$ must have a fixed cardinality equal to the dimension of M/IM as a R/I-vector space, so $|B|$ is the same for different bases.

(2) Yes. Since $M \cong R^n$ we will prove the result for R^n. Let F be the fraction field of R. Then R^n is an additive subgroup of F^n. Consider $T = \{x_1, \ldots, x_k\} \subset R^n$ over F. If this is linearly independent over F it is clearly also linearly independent over R. Assume the converse: that T is linearly independent over R. If it were linearly dependent over F, we would have $\sum_{i=1}^k s_i r_i x_i = 0$ for some $r_i \in R$ and nonzero $s_i \in R$. Multiplying by $s = s_1 \cdots s_k$ gives us a linear dependence relation with coefficients in R, which thus have to be 0 (since we assume T is linearly independent over R and R). Since R is an ID this implies $r_i = 0$. Thus T is linearly independent over F.

Since F^n has no linearly independent set (over F) of size more than n, neither can R^n have a linearly independent subset of size larger than n.

(3) No. Take $M = R$ free of rank 1 over itself. Any non-unit of R is not a basis for R (think of $2 \in \mathbb{Z}$ over \mathbb{Z}, it generates the submodule $2\mathbb{Z} \neq \mathbb{Z}$).
(4) Yes. From (1), if S is a generating set, then $S + IM$ is a generating set for M/IM as a R/I-vector space. For vector spaces, such a generating set must have size at least equal to the dimension n. Thus $n \leq |S + IM| = |S|$.

(5) Yes. Take a generating set S of size n. Combining arguments from (2), we have that S generates F^n as a F'-vector space, where F' is the fraction field of R. Since $\dim_{F'} F^n = n$, S must be a basis. In particular it is linearly independent over R and hence a basis.

(6) Yes. Let $B = \{x_1, \ldots, x_n\}$ be a generating set of linearly independent vectors. Every $m \in M$ can be written as $m = r_1x_1 + \ldots + r_nx_n$ for some $r_i \in R$. This representation is unique, otherwise it gives a nontrivial linear combination of the x_i’s that is 0, contradicting linear independence. Thus B is a basis.

(7) No. Consider \mathbb{Z} as a module over itself. $\{2\}$ is a 1-element set, so linearly independent, but does not extend to a basis of \mathbb{Z}.

(8) No. Again, consider $M = \mathbb{Z}$ viewed as module over itself $R = \mathbb{Z}$. Then $\{2, 3\}$ is a generating set that does not contain a basis.

\qed