Problem 1 (10.1.8).

Proof. (a) We have to check that Tor(M) is an abelian subgroup of M and that for any \(r' \in R, m \in \text{Tor}(M) \) then \(r'm \in \text{Tor}(M) \).

Since \(0 \in \text{Tor}(M) \), this is nonempty. If \(m, n \in \text{Tor}(M) \) then there exist \(r, s \in R \) with \(rm = sn = 0 \). Then \(rs(m - n) = 0 \), so \(m - n \in \text{Tor}(M) \) (note: \(rs \neq 0 \) - here is where we are using that \(R \) is an integral domain!) and \(\text{Tor}(M) \) is an abelian subgroup of \(M \). For any \(r' \in R \) we have \(r(r'm) = (rr')m = r'(rm) = 0 \), since integral domains are commutative; hence \(r'm \in \text{Tor}(M) \).

(b) Let \(R = \mathbb{Z}/6\mathbb{Z} \) viewed as a module \(M \) over itself. Then \(2, 3 \in \text{Tor}(M) \) but \(2 + 3 \notin \text{Tor}(M) \).

(c) Since \(R \) has zerodivisors, there exist nonzero \(a, b \in R \) with \(ab = 0 \). Then for any \(m \in M \), either \(bm = 0 \) which means \(m \in \text{Tor}(M) \), or \(a(bm) = 0 \) so \(bm \in \text{Tor}(M) \).

\[\square \]

Problem 2 (10.2.8).

Proof. For any \(m \in M \), there exists \(r \in R \) with \(rm = 0 \). Then \(r\varphi(m) = \varphi(rm) = \varphi(0) = 0 \), so \(\varphi(m) \in \text{Tor}(N) \).

\[\square \]

Problem 3 (10.3.5).

Proof. Let \(m_i, 1 \leq i \leq k \) be a set of generators for \(M \). Since \(M \) is torsion, there exist nonzero \(r_i \in R \) such that \(r_i m_i = 0 \) for all \(i \). Let \(r = r_1 \cdots r_k \). A general element \(m \) of \(M \) is a linear combination of the generators, say \(m = a_1 m_1 + \ldots + a_k m_k \) where \(a_i \in R \). Then \(r \cdot m = 0 \) and \(r \neq 0 \) since \(R \) is an integral domain. Thus \(r \) is a nonzero element of \(R \) annihilating all of \(M \), i.e. \(\text{Ann}(M) \) is nontrivial.

\[\square \]

Problem 4 (10.3.18).

Proof. Let \(q_i = \prod_{j \neq i} p_i^{\alpha_j} \). Let’s first show that \(q_i M = M_i \). The inclusion \(q_i M \subseteq M_i \) is clear since \(p_i^{\alpha_i} \cdot (q_i m) = am = 0 \), hence \(q_i m \in M_i \). Conversely, let \(m \in M_i \). Since \(R \) is a PID, there exist elements \(r, s \) such that \(rq_i + sp_i^{\alpha_i} = 1 \). Then

\[m = 1 \cdot m = (rq_i + sp_i^{\alpha_i}) = q_i rm \in q_i M. \]

Thus \(M_i = q_i M \).

Now we prove that \(M = \oplus M_i \). Let’s first show that \(M = M_1 + \ldots + M_k \). The inclusion \(\supset \) is clear. Conversely, let \(m \in M \). Since \(\gcd(q_1, \ldots, q_k) = 1 \), there are \(r_i \in R \) with \(\sum r_i q_i = 1 \). Then \(m = 1 \cdot m = \sum r_i \cdot q_i m \in M_1 + \ldots + M_k \).

Finally, let’s check that the above sum is direct. For that we show that \(M_i \cap (M_1 + \ldots + M_{i-1} + M_{i+1} + \ldots + M_k) \) is trivial (i.e. contains only 0). Let \(m \) be an element in the intersection. Then \(p_i^{\alpha_i} m = 0 \) and \(q_i m = 0 \). Writing again \(1 = rq_i + sp_i^{\alpha_i} \), we get \(m = 1 \cdot m = 0 \).

\[\square \]

Problem 5.

Proof. (1) Let \(m, n \in N[I] \). For every \(a \in I \) we have \(a(m + n) = am + an = 0 + 0 = 0 \), hence \(m + n \in N[i] \).
(2) Let \(m \) be a generator for \(M \). Then a homomorphism \(f : M \to N \) is uniquely determined by the image \(f(m) \). Note that \(af(m) = f(am) = 0 \) for all \(a \in \text{Ann}(m) \), so \(f(m) \) is indeed in \(N[\text{Ann}(m)] \). Define \(\varphi : \text{Hom}_R(M, N) \to N[\text{Ann}(m)] \) by \(\varphi(f) = f(m) \). The zero homomorphism goes to 0 and \(\varphi(f + g) = f(m) + g(m) = (f + g)(m) = \varphi(f + g) \).

For any \(n \in N[\text{Ann}(m)] \), we can define a homomorphism \(f : M \to N \) sending \(m \mapsto n \). This gives an inverse homomorphism for \(\varphi \), so \(\varphi \) is an isomorphism.

(3) If \(M \) is irreducible, then any nonzero element of \(M \) generates \(M \).

If \(f(m) = 0 \), then \(f \equiv 0 \). Assume \(f(m) \neq 0 \). We want to show \(f \) is injective, i.e. \(f(am) \neq 0 \) for any \(a \) such that \(am \neq 0 \), \(a \in R \). Assume that \(f(am) = af(m) = 0 \). Since \(am \neq 0 \) and it generates \(M \), there is \(b \in R \), such that \(bam = m \). Then \(f(m) = f(bam) = bf(am) = 0 \), contradiction to the assumption \(f(m) \neq 0 \).

(4) Let \(M, N \) be two irreducible modules and \(f : M \to N \) an \(R \)-linear map. Then \(\ker f \) and \(\text{im} f \) are submodules of \(M \) and \(N \) respectively. From irreducibility, \(\ker f = 0 \) or \(M \). The latter case means \(f \equiv 0 \). In the first case, \(f \) is injective. Then \(\text{im} f \) cannot be 0, so \(\text{im} f = N \), i.e. \(f \) is surjective. Thus \(f \) is bijective.

(5) \(0 \in N[I] \) is clear. We saw that \(N[I] \) is closed under addition. Let now \(n \in N[I] \) and \(r \in R \). Then \(a(rn) = r(an) = r \cdot 0 = 0 \), for all \(a \in I \), so \(rn \in N[I] \). Thus \(N[I] \) is a submodule of \(N \).

(6) Remember that the abelian group homomorphism above sent \(f : M \to N \) to \(f(m) \). We just have to check that this is \(R \)-linear. Indeed, let \(r \in R \). Then \(rf \) is the homomorphism sending \(m \) to \(rf(m) \). Thus \(\varphi(rf) = (rf)(m) = rf(m) = r\varphi(m) \).

(7) A division algebra simply means a not necessarily commutative ring where every nonzero element is invertible (sort of a noncommutative field). By part (4) applied to \(N = M \), every nonzero element is an isomorphism, so it is invertible, hence \(\text{End}_R(M) \) is indeed a division algebra.

Now we have to check that (the field) \(R/m \) is in the center. For every element \(\bar{a} \) of \(F \) pick a representative class \(a \) in \(R \) (under \(R \to F = R/m \)). Then \(m \mapsto am \) is an endomorphism for every such \(a \). Call it \(f_a \).

Moreover for \(a \neq b \) distinct representatives, these endomorphisms are different, i.e. \(f_a \neq f_b \). If \(f : M \to M \) is any element of our division algebra, then

\[f(f_a(m')) = f(am') = af(m') = f_a(f(m')) \]

for all \(m' \in M \). Thus \(f_a \) commutes with every \(f \in \text{End}_R(M) \). Thus \(\{f_a\} \cong F = R/M \) lies in the center of \(\text{End}_R(M) \).

\[\square \]

Problem 6.

Proof. (1) We want to check \((r, s) \circ m = rm \) for all \(m \in M \), makes \(M \) into an \(R \times S \)-module. We have

\[
(r, s) \circ (m_1 + m_2) = r(m_1 + m_2) = rm_1 + rm_2 = (r, s) \circ m_1 + (r, s) \circ m_2
\]

\[
(r_1 + r_2, s_1 + s_2) \circ m = (r_1 + r_2)m = r_1m + r_2m = (r_1, s_1) \circ m + (r_2, s_2) \circ m
\]

\[
(r_1r_2, s_1s_2) \circ m = (r_1r_2)m = (r_1)((r_2, s_2) \circ m) = (r_1, s_1) \circ ((r_2, s_2) \circ m),
\]

and finally \((1, 1) \circ m = 1 \cdot m = m \).
(2) Let T be an $R \times S$-module. Let $M = (1, 0)T$ and $N = (0, 1)T$. We show that M is an R-module. By symmetry, N will be an S-module then. We have that $(1, 0) \cdot 0 \in M$, hence M is non-empty. Now consider $(1, 0)t, (1, 0)t' \in M$ and $(r, 0) \in R$. Then we have

$$(1, 0)t + (r, 0)(1, 0)t' = (1, 0)t + (r, 0)(r, 0)t' = (1, 0)(t + rt') \in M$$

Thus, M is an R-module.

Now let’s check that $T = M \oplus N$. First, we need to show that $T = M + N$. Consider $t \in T$. We can write $t = (1, 1)t = (1, 0)t + (0, 1)t \in M + N$. Then we need to check that if $t \in M \cap N$, then $t = 0$. Indeed, suppose $t = (1, 0)x = (0, 1)y$. But we have that $x = (1, 1)x = (1, 0)x + (0, 1)x = (0, 1)(x+y)$. Multiplying on both sides by $(0, 1)$, we get $(0, 1)x = (0, 1)(x+y) = (0, 1)x + (0, 1)y$, which implies that $(0, 1)y = 0$. Thus $t = 0$, as wanted.