Due: Wednesday, February 24, 2016 at 1am.

All numbered problems are from Dummit and Foote, Third Ed.
All problems will be graded. Show all work to receive full credit.

Read section: 12.1 of the textbook (compare to section 5.2 of the textbook).

- From section 12.1: problems 2, 5,

- From section 12.1: problem 16. Also, (a) deduce that if M is finitely generated and there exists a surjective R-morphism $M \to N$ then N is finitely generated; (b) given an example of a submodule of a finitely generated module which is not finitely generated. (Hint: Let $R = \mathbb{Q}[x_1, x_2, \ldots x_n, \ldots]$ the polynomial ring in infinitely many variables with coefficients in \mathbb{Q}. Prove that the ideal $I = (x_1, \ldots x_n, \ldots)$ of R generated by all variables is not finitely generated.)

- Assume R is an ID. For $n \geq 1$, let $\phi : R^n \to R^n$ be a R-linear morphism, and write $A \in M_n(R)$ for the associated matrix. I.e., $\phi(x) = Ax$. Prove (1) ϕ is injective if and only if $\det(A) \neq 0$. (2) ϕ is bijective if and only if $\det(A)$ is a unit. (Hint: Let F be the fraction field of R, consider $R^n \subset F^n$. Note that the map $\phi : R^n \to R^n$ extends to a unique map $\Phi : F^n \to F^n$. Recall the definition of the matrix A^* adjoint to A. Note that $A^* \in M_n(R).$)

- Let R be a commutative ID (not necessarily a PID), and M an R-module. For any finite set S of M, consider the R-linear morphism $\phi_S : R^{[S]} \to M$ which maps $(a_s) \mapsto \sum_{s \in S} a_s s$. The finite set S is a basis of M if ϕ_S is an isomorphism. The finite set S is a generating M if ϕ_S is surjective. The finite set S is a linearly independent M if ϕ_S is injective. Assume M is free of rank n. Prove or give a counterexample: (1) Every basis of M has size n. (2) Every set of linearly independent vectors has size at most n. (3) A set of linearly independent vectors of size n is a basis. (4) Every generating set has size at least n. (5) A generating set of size n is a basis. (6) A generating set consisting of linearly independent vector is a basis. (7) Every linearly independent set extends to a basis. (8) Every generating set contains a basis. (Hint: Let F be the fraction field of R, there exists a F-vector space V containing M, of dimension equal to the rank of M.)