Lecture 4: Bayes’ Law

Relevant textbook passages:
Pitman [5]: 1.4, 1.5, 1.6, 2.1
Larsen–Marx [4]: 2.4, 3.2

4.1 Conditional Probability
Suppose we acquire new information on the outcome of a random experiment that takes the form, “The sample outcome lies in a set F,” or “The event F has occurred.” Then we should update or revise our probabilities to take into account this new information.

For example, suppose an experiment can three have equally likely outcomes, a, b, c, and we find out that the result lies in the event $F = \{a, b\}$. What should we revise our probabilities to be based on this new information? I claim that we should assign probability 0 to c, and probability $1/2$ each to a and b. In other words:

4.1.1 Definition If $P(F) > 0$, the conditional probability of E given F, written $P(E \mid F)$, is defined by

$$P(E \mid F) = \frac{P(EF)}{P(F)}.$$

(This only makes sense if $P(F) > 0$.)

Note that $P(F \mid F) = 1$.

4.2 Independent events

4.2.1 Definition Events E and F are (stochastically) independent if for $P(F) \neq 0$,

$$P(E \mid F) = P(E),$$

or equivalently,

$$P(EF) = P(E) \cdot P(F).$$

That is, knowing that F has occurred has no impact on the probability of E. The second formulation works even if E or F has probability 0.

4.2.2 Lemma If E and F are independent, then E and F^c are independent; and E^c and F^c are independent; and E^c and F are independent.
Proof: It suffices to prove that if E and F are independent, then E^c and F are independent. The other conclusions follow by symmetry. So write

$$F = (EF) \cup (E^cF),$$

so by additivity

$$P(F) = P(EF) + P(E^cF) = P(E)P(F) + P(E^cF),$$

where the second inequality follows from the independence of E and F. Now solve for $P(E^cF)$ to get

$$P(E^cF) = (1 - P(E))P(F) = P(E^c)P(F).$$

But this is just the definition of independence of E^c and F. \hfill \square

Product sample spaces

Consider two random experiments $(S_1, \mathcal{E}_1, P_1)$ and $(S_2, \mathcal{E}_2, P_2)$. Intuitively the outcome of each experiment is independent (in the nontechnical sense) of the other, then the “joint experiment” has sample space $S_1 \times S_2$, the Cartesian product of the two sample spaces. The set of events will certainly include sets of the form $E_1 \times E_2$ where $E_i \in \mathcal{E}_i$, but will also include just enough other sets to make a σ-algebra of events. If the outcomes are independent, we expect that the probability

$$P(E_1 \times E_2) = P((E_1 \times S_2) \cap (S_1 \times E_2)) = P_1(E_1) \times P_2(E_2).$$

In this case, the events $(E_1 \times S_2)$ and $(S_1 \times E_2)$ in the joint experiment (which are essentially E_1 in experiment 1 and E_2 in experiment 2) are technically stochastically independent. This “product structure” is typical (but not definitional) of stochastic independence.

We usually think that successive coin tosses, rolls of dice, etc., are independent. As an example of experiments that are not independent, consider testing potentially fatal drugs on lab rats, with the same set of rats. If a rat dies in the first experiment, it diminishes the probability he survives in the second.

An example

Consider the random experiment of independently rolling two dice. There are 36 equally likely outcomes and the sample space S can be represented by the following rectangular array.

\[
\begin{array}{cccccc}
6 & \cdot & \cdot & \cdot & \cdot & \cdot \\
5 & \cdot & \cdot & \cdot & \cdot & \cdot \\
4 & \cdot & \cdot & \cdot & \cdot & \cdot \\
3 & \cdot & \cdot & \cdot & \cdot & \cdot \\
2 & \cdot & \cdot & \cdot & \cdot & \cdot \\
1 & \cdot & \cdot & \cdot & \cdot & \cdot \\
\end{array}
\]

The assumption that each outcome is equally likely amounts to assuming that the probability of the product of an event in terms of the first die and one in terms of the second die is the product of the probabilities of each event.

Consider the event E that the second die is 3 or 5, which contains 12 points; and the event F that the first is 2, 3, or 4, which contains 18 points. Thus $P(E) = 12/36 = 1/3$, and $P(F) = 18/36 = 1/2$.

v. 2016.01.11::08.27
The intersection has 6 points, so \(P(EF) = \frac{6}{36} = \frac{1}{6} \). Observe that

\[
P(EF) = \frac{1}{6} = \frac{11}{32} = P(E)P(F).
\]

Another example

The red oval represent the event \(A \) that the sum of the two dice is 7 or 8. It contains 11 points, so it has probability \(\frac{11}{36} \). Let \(B \) be the event that the second die is 1. It is outlined in blue, and has 6 points, and so has probability \(\frac{6}{36} = \frac{1}{6} \). The event \(BA \) is circled in green, and consists of the single point \((6, 1) \).

If we “condition” on \(A \), we can ask, what is the probability of the event \(B = (\text{the second die is } 1) \) given that we know that \(A \) has occurred, denoted \(B \mid A \). Thus

\[
P(B \mid A) = \frac{P(BA)}{P(A)} = \frac{\frac{1}{36}}{\frac{11}{36}} = \frac{1}{11}.
\]

That is, we count the number of points in \(BA \) and divide by the number of points in \(A \). Similarly

\[
P(A \mid B) = \frac{P(AB)}{P(B)} = \frac{\frac{1}{36}}{\frac{6}{36}} = \frac{1}{6}.
\]

Yet another example

To see that not every example of independence involves “orthogonal” product sets, consider this example involving rolling two dice independently. Event \(A \) is the event that the sum is 7, and event \(B \) is the event that the second die is 3. These events are not of the form \(E_i \times S_j \), yet they are stochastically independent.
Conditional probability, continued

We can think of $P(\cdot \mid A)$ as a “renormalized” probability, with A as the new sample space. That is,

1. $P(A \mid A) = 1$.
2. If $BC = \emptyset$, then $P(B \cup C \mid A) = P(B \mid A) + P(C \mid A)$
3. $P(\emptyset \mid A) = 0$.

Proof of (2):

\[
P(B \cup C \mid A) = \frac{P((B \cup C)A)}{P(A)}
= \frac{P((BA) \cup (CA))}{P(A)}
= \frac{P(BA) + P(CA)}{P(A)}
= \frac{P(BA)}{P(A)} + \frac{P(CA)}{P(A)}
= P(B \mid A) + P(C \mid A).
\]

4.3 Bayes’ Rule

Now

\[
P(B \mid A) = \frac{P(BA)}{P(A)}, \quad P(A \mid B) = \frac{P(AB)}{P(B)},
\]
so we have the Multiplication Rule

\[
P(AB) = P(B \mid A) \cdot P(A) = P(A \mid B) \cdot P(B).
\]

and

4.3.1 Bayes’ Rule

\[
P(B \mid A) = P(A \mid B) \frac{P(B)}{P(A)}.
\]
We can also discuss odds using Bayes’ Law. Recall that the odds against \(B \) are \(\frac{P(B^c)}{P(B)} \).

Now suppose we know that event \(A \) has occurred. The posterior odds against \(B \) are now

\[
\frac{P(B^c | A)}{P(B | A)} = \frac{P(A | B^c) P(B^c)}{P(A | B) P(B)} = \frac{P(A | B^c) P(B^c)}{P(A | B) P(B)}.
\]

The term \(\frac{P(B^c)}{P(B)} \) is the prior odds ratio. Now let’s compare the posterior and prior odds:

\[
\frac{P(B^c | A)/P(B | A)}{P(B^c)/P(B)} = \frac{P(A | B^c)}{P(A | B)}.
\]

The right-hand side term \(\frac{P(A | B^c)}{P(A | B)} \) is called the likelihood ratio or the Bayes factor.

Aside: According to my favorite authority on such matters, the 13th edition of the *Chicago Manual of Styles* [6], we should write Bayes’s Rule, but nobody does.

4.3.2 Proposition (Law of Average Conditional Probability)

[Cf. Pitman [5], § 1.4, p. 41.] Let \(B_1, \ldots, B_n \) be a partition of \(S \). Then for any \(A \in \mathcal{E} \),

\[
P(A) = P(A | B_1)P(B_1) + \cdots + P(A | B_n)P(B_n).
\]

Proof: This follows from the fact than for each \(i \), \(P(A | B_i)P(B_i) = P(AB_i) \) and the fact that since the \(B_i \)'s partition \(S \), we have

\[
A = \bigcup_{i=1}^{n} (AB_i),
\]

and for \(i \neq j \), \((AB_i)(AB_j) = \emptyset \). Now just use additivity of \(P \).

We can use this to rephrase Bayes’ Rule as follows.

4.3.3 Theorem (Bayes’ Rule)

Let the events \(B_1, \ldots, B_n \) be a partition of \(S \). The for any event \(A \) and any \(i \)

\[
P(B_i | A) = \frac{P(A | B_i)P(B_i)}{P(A | B_1)P(B_1) + \cdots + P(A | B_n)P(B_n)}
\]

4.3.4 Example (Card placement)

Consider a well-shuffled standard deck of 52 cards. By well-shuffled I mean that every ordering of the cards is equally likely. (Note that there are \(52! \approx 8 \times 10^{67} \) orderings, so it is not possible to list them all.) In that case, the probability that the top card is an ace is equal to the probability that the second card is an ace and both are equal to \(4/52 = 1/13 \). (We’ll come back to this later on.)

I was asked how this can be so, since if the first card is an ace, the probability that the second card is an ace is only \(3/51 \). This is indeed true, but so what? Let

\[
A \text{ denote the event the top card is an ace,}
\]

and let

\[
B \text{ denote the event that the second card is an ace.}
\]
Then I claim that $P(A) = P(B) = 4/52 = 1/13$, and also $P(B \mid A) = 3/51$. By the above proposition,

$$P(B) = P(B \mid A) P(A) + (B \mid A^c) P(A^c)$$

$$= \frac{3}{51} \cdot \frac{1}{13} + \frac{4}{51} \cdot \frac{12}{13}$$

$$= \frac{3 + 48}{13 \times 51}$$

$$= \frac{1}{13}$$

□

4.4 Bayes’ Law and False Positives

Recall Bayes’ Rule:

$$P(B \mid A) = \frac{P(A \mid B)P(B)}{P(A \mid B)P(B) + P(A \mid B^c)P(B^c)}$$

“When you hear hoofbeats, think horses, not zebras,” is advice commonly given to North American medical students. It means that when you are presented with an array of symptoms, you should think of the most likely, not the most exotic explanation.

4.4.1 Example (Hoofbeats) Suppose there is a diagnostic test, e.g., CEA (carcinoembryonic antigen) levels, for a particular disease (e.g., colon cancer or rheumatoid arthritis). It is in the nature of human physiology and medical tests that they are imperfect. That is, you may have the disease and the test may not catch it, or you may not have the disease, but the test will suggest that you do. (These mistakes are usually labeled, unimaginatively and opaquely, as Type 1 and Type 2 errors.)

Suppose further that in fact, one in a thousand people suffer from disease D. Suppose that the test is accurate in the sense that if you have the disease, it catches it (tests positive) 99% of the time. But suppose also that there is a 2% chance that it reports falsely that a someone has the disease when in fact they do not.

What is the probability that a randomly selected individual who is tested and has a positive test result actually has the disease? What is the probability that someone who tests negative for the disease actually is disease free?

Let D denote the event that a randomly selected person has the disease, and $\neg D$ be the event the person does not have the disease. Let $+$ denote the event that the test is positive, and $-$ be the event the test is negative. We are told

$$P(D) = 0.001, \quad P(\neg D) = 0.999,$$

$$\text{Prob} (\ + \mid D) = 0.99 \quad \text{and} \quad \text{Prob} (\ + \mid \neg D) = 0.02,$$

so

$$\text{Prob} (\ - \mid D) = 0.01 \quad \text{and} \quad \text{Prob} (\ - \mid \neg D) = 0.98,$$
For the first question we want to know \(P(D \mid +) \). By Bayes’ Rule,

\[
P(D \mid +) = \frac{P(+ \mid D)P(D)}{P(+ \mid D)P(D) + P(+ \mid \neg D)P(\neg D)}
\]

\[
= \frac{0.99 \times 0.001}{0.99 \times 0.001 + (0.02 \times 0.99)}
\]

\[
= \frac{0.00099}{0.00099 + 0.0198}
\]

\[
= 0.0000205821.
\]

In other words, if the test reports that you have the disease there is only a 0.000002 chance that you do have the disease.

For the second question, we want to know \(P(\neg D \mid -) \), which is

\[
P(\neg D \mid -) = \frac{P(\neg D \mid \neg D)P(\neg D)}{P(\neg D \mid \neg D)P(\neg D) + P(\neg D \mid D)P(D)}
\]

\[
= \frac{0.98 \times 0.999}{0.98 \times 0.999 + (0.01 \times 0.001)}
\]

\[
= 0.999999.
\]

That is, a negative result means it is very unlikely you do have the disease. \(\square \)

4.5 A family example

Assume that the probability that a child is male or female is 1/2, and that the sex of children in a family are independent trials. So for a family with two children the sample space is

\[
S = \{(F, F), (F, M), (M, F), (M, M)\},
\]

and each outcome has probability 1/4. Now suppose you are informed that the family has at least one girl. What is the probability that the other child is a boy? Let

\[
G = \{(F, F), (F, M), (M, F)\}
\]

be the event that there is at least one girl. The event that “the other child is a boy” corresponds to the event

\[
B = \{(F, M), (M, F)\}.
\]

The probability \(P(B \mid G) \) is thus 2/3.

One year a student asked “How does knowing a family has a girl make it more likely to have a boy?” It doesn’t. The probability that the family has a boy is not 1/2. It’s actually 3/4. So learning that one child is a girl reduces the probability of at least one boy from 3/4 to 2/3.

Now suppose you are told that the eldest child is a girl. This is the event

\[
E = \{(F, F), (F, M)\}.
\]

Now the probability that the other child is a boy is 1/2.

This means that the information that “there is at least one girl” and the information that “the eldest is a girl” are really different pieces of information. While it might seem that birth order is irrelevant, a careful examination of the outcome space shows that it is not.

Another variant is this. Suppose you meet girl \(X \), who announces “I have one sibling.” What is the probability that it is a boy?

The outcome space here is not obvious. I argue that it is:

\[
\{(X, F), (X, M), (F, X), (M, X)\}.
\]
We don’t know the probabilities of the individual outcomes, but \((X, F)\) and \((X, M)\) are equally likely, and \((F, X)\) and \((M, X)\) are equally likely. Let

\[
P\{ (X, F) \} = P\{ (X, M) \} = a \quad \text{and} \quad P\{ (F, X) \} = P\{ (M, X) \} = b.
\]

Thus \(2a + 2b = 1\), so \(a + b = 1/2\). The probability of \(X\)’s sibling being a boy is

\[
P\{ (X, M), (M, X) \} = P\{ (X, M) \} + P\{ (M, X) \} = a + b = 1/2.
\]

4.6 Conditioning and intersections

We already know that \(P(AB) = P(A \mid B)P(B)\). This extends by a simple induction argument to the following (Pitman [5, p. 56]):

\[
P\{A_1A_2 \cdots A_n\} = P\{A_n \mid A_{n-1} \cdots A_1\}P(A_{n-1} \cdots A_1)
\]

but

\[
P\{A_{n-1} \cdots A_1\} = P\{A_{n-1} \mid A_{n-2} \cdots A_1\}P(A_{n-2} \cdots A_1),
\]

so continuing in this fashion we obtain

\[
P\{A_1A_2 \cdots A_n\} = P\{A_n \mid A_{n-1} \cdots A_1\}P\{A_{n-1} \mid A_{n-2} \cdots A_1\} \cdots P\{A_2 \mid A_1\}P(A_2 \mid A_1)P(A_1)
\]

4.7 The famous birthday problem

Assume that there are only 365 possible birthdays, all equally likely,\(^1\) and assume that in a typical group they are stochastically independent.\(^2\) In a group of size \(n \leq 365\), what is the probability that at least two people share a birthday? The sample space for this experiment is

\[
S = \{1, \ldots, 365\}^n,
\]

which gets big fast. \(|S|\) is about \(1.7 \times 10^{61}\) when \(n = 20\).

This is a problem where it is easier to compute the complementary probability, that is, the probability that all the birthdays are distinct. Number the people from 1 to \(n\). Let \(A_k\) be the event that the birthdays of persons 1 through \(k\) are distinct. (Note that \(A_1 = S\).

Observe that

\[
A_{k+1} \subset A_k
\]

for every \(k\), which means \(A_k = A_k A_{k-1} \cdots A_1\) for every \(k\). Thus

\[
P\{A_{k+1} \mid A_k A_{k-1} \cdots A_1\} = P\{A_{k+1} \mid A_k\}.
\]

The formula for the probability of an intersection in terms of conditional probabilities implies

\[
P\{A_n\} = P\{A_1 \cdots A_n\} = P\{A_n \mid A_{n-1} \cdots A_1\}P\{A_{n-1} \mid A_{n-2} \cdots A_1\} \cdots P\{A_2 \mid A_1\}P(A_2 \mid A_1)P(A_1)
\]

\(^1\)It is unlikely that all birthdays are equally likely. For instance, it was reported that many mothers scheduled C-sections so their children would be born on 12/12/2012. There are also special dates, such as New Year’s Eve, on which children are more likely to be conceived. It also matters how the group is selected. Malcolm Gladwell [3, pp. 22–23] reports that a Canadian psychologist named Roger Barnsley discovered the “iron law of Canadian hockey: in any elite group of hockey players—the very best of the best—40% of the players will be born between January and March, 30% between April and June, 20% between July and September, and 10% between October and December.” Can you think of an explanation for this?

\(^2\)If this were a convention of identical twins, the stochastic independence assumption would have to be jettisoned.
4.7.1 Claim For $k < 365$,

$$P(A_{k+1} \mid A_k) = \frac{365 - k}{365}.$$

While in many ways this claim is obvious, let’s plug and chug.

Proof: By definition,

$$P(A_{k+1} \mid A_k) = \frac{P(A_{k+1}A_k)}{P(A_k)} = \frac{P(A_{k+1})}{P(A_k)}.$$

Now there are 365^k equally likely possible lists of birthdays for the k people, since it is quite possible to repeat a birthday. How many give distinct birthdays? There are 365 possibilities for the first person, but after that only 364 choices remain for the second, etc. Thus there are $365!/(365 - k)!$ lists of distinct birthdays for k people. So for each $k \leq 365$,

$$P(A_k) = \frac{365!}{(365 - k)!365^k},$$

which in turn implies

$$P(A_{k+1} \mid A_k) = \frac{P(A_{k+1})}{P(A_k)} = \frac{\frac{365!}{(365-k-1)!365^{k+1}}}{\frac{365!}{(365-k)!365^k}} = \frac{365 - k}{365},$$

as claimed. \square

Thus

$$P(A_n) = \prod_{k=1}^{n-1} \frac{365 - k}{365}.$$

The probability that at least two share a birthday is 1 minus this product. Here is some Mathematica code to make a table

TableForm[

Table[{n, N[1 - Product[(365 - k)/365, {k, 1, n - 1}]]}, {n, 20, 30}]
]

// TeXForm
to produce this table:³

<table>
<thead>
<tr>
<th>n</th>
<th>Prob. of sharing</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.411438</td>
</tr>
<tr>
<td>21</td>
<td>0.443688</td>
</tr>
<tr>
<td>22</td>
<td>0.475695</td>
</tr>
<tr>
<td>23</td>
<td>0.507297</td>
</tr>
<tr>
<td>24</td>
<td>0.538344</td>
</tr>
<tr>
<td>25</td>
<td>0.5687</td>
</tr>
<tr>
<td>26</td>
<td>0.598241</td>
</tr>
<tr>
<td>27</td>
<td>0.626859</td>
</tr>
<tr>
<td>28</td>
<td>0.654461</td>
</tr>
<tr>
<td>29</td>
<td>0.680969</td>
</tr>
<tr>
<td>30</td>
<td>0.706316</td>
</tr>
</tbody>
</table>

Pitman [5, p. 63] gets 0.506 for $n = 23$, but Mathematica gets 0.507. Hmmm.

4.8 Multi-stage experiments

Bayes’ Law is useful for dealing with multi-stage experiments. The first example is inferring from which urn a ball was drawn. While this may seem like an artificial example, it is caricature of Bayesian statistical inference.
4.8.1 Example (Guessing urns) There are n urns filled with black and white balls. (Figure 4.1 shows what I picture of when hear the word “urn.”) Let f_i be the fraction of white balls in urn i. In stage 1 an urn is chosen at random (each urn has probability $1/n$). In stage 2 a ball is drawn at random from the urn. Thus the sample space is $S = \{1, \ldots, n\} \times \{B, W\}$. Let E be the set of all subsets of S.

Suppose a white ball is drawn from the chosen urn. What can we say about the event that Urn i was chosen. (This is the subset $E = \{(i, W), (i, B)\}$.) According to Bayes’ Rules this is:

$$P(i \mid W) = \frac{P(W \mid i)P(i)}{P(W \mid 1)P(1) + \cdots + P(W \mid n)P(n)} = \frac{f_i}{f_1 + \cdots + f_n}.$$

(Note that $P(W \mid i) = f_i$.)

Sometimes, in a multi-stage experiment, such as in the urn problem, it is easier to specify conditional probabilities than the probabilities of every point in the sample space. A **tree diagram** is then useful for describing the probability space. Read section 1.6 in Pitman [5].

> In a tree diagram, the probabilities labeling a branch are actually the conditional probabilities of choosing that branch conditional on reaching the node. (This is really what Section 4.6 is about.) Probabilities of final nodes are computed by multiplying the probabilities along the path.

It’s actually more intuitive than it sounds.

4.8.2 Example (A numerical example)

For concreteness say there are two urns and urn 1 has 10 white and 5 black balls ($f_1 = 10/15$), and urn 2 has 3 white and 12 black balls ($f_2 = 3/15$). (It’s easier to leave these over a common denominator.) Each Urn is equally likely to be selected. Figure 4.2 gives a tree diagram for this example.

Then

$$P(\text{Urn 1} \mid W) = \frac{\frac{10}{15} \cdot \frac{1}{2}}{\frac{10}{15} \cdot \frac{1}{2} + \frac{5}{15} \cdot \frac{1}{2}} = \frac{10}{13},$$

and

$$P(\text{Urn 1} \mid B) = \frac{\frac{5}{15} \cdot \frac{1}{2}}{\frac{5}{15} \cdot \frac{1}{2} + \frac{12}{15} \cdot \frac{1}{2}} = \frac{5}{17}.$$

\[3\text{I did edit the TeX code to make the table look better.}\]
Sometimes it easier to think in terms of posterior odds. Recall (Section 4.3) that the posterior odds against B given A are
\[
\frac{P(B^c | A)}{P(B | A)} = \frac{P(A | B^c) P(B^c)}{P(A | B) P(B)}.
\]

Letting B be the event that Urn 1 was chosen and A be the event that a White ball was drawn we have
\[
\frac{P(\text{Urn 2} | \text{White})}{P(\text{Urn 1} | \text{White})} = \frac{P(\text{White} | \text{Urn 2}) \, P(\text{Urn 2})}{P(\text{White} | \text{Urn 1}) \, P(\text{Urn 1})} = \frac{3}{15} \cdot \frac{3}{10} : \frac{1}{2} \cdot \frac{1}{2} = \frac{3}{15} \cdot \frac{1}{10} \cdot \frac{4}{5}.
\]

The odds against Urn 1 are $3 : 10$, so the probability is $10/(3 + 10) = 10/13$. □

Hoofbeats revisited

There is something wrong with the hoofbeat example. The conclusions would be correct if the person being tested were randomly selected from the population at large. But this is rarely the case. Usually someone is tested only if there are symptoms or other reasons to believe the person may have the disease or have been exposed to it.

So let’s modify this example by introducing a symptom S. Suppose that if you have the disease there is a 90% chance you have the symptom, but if you do not have the disease, there is only a 20% chance you have the symptom. Suppose further that only those exhibiting the symptom are tested, but that the symptom has no influence on the outcome of the test.

Let’s draw tree diagram for this case.

Now the probability of having the disease given a positive test is
\[
\frac{0.000891}{0.000891 + 0.003996} = 0.18232.
\]
While low, this is still much higher than without the symptoms.

4.9 The Monty Hall Problem

This problem is often quite successful at getting smart people into fights with each other. Here is the back story.

When I was young there was a very popular TV show called *Let's Make A Deal*, hosted by one Monty Hall, hereinafter referred to as MH. At the end of every show, a contestant was offered the choice of a prize behind one of three numbered doors. Behind one of the doors was a very nice prize, often a new car, and behind each of the other two doors was a booby prize, often a goat. Once the contestant had made his or her selection, MH would often open one of the other doors to reveal a goat. (He always knew where the car was.) He would then try to buy back the door selected by the contestant. Reportedly, on one occasion, the contestant asked to trade for the unopened door. *What is the probability that the car is behind the unopened door?*

A popular, but incorrect answer to this question runs like this. Since there are two doors left, and since we know that there is always a goat to show, the opening of the door with the goat conveys no information as to the whereabouts of the car, so the probability of the car being behind either of the two remaining doors must each be one-half. This is wrong, even though intelligent people have argued at great length that it is correct. (See the Wikipedia article, which claims that even Paul Erdős believed it was fifty-fifty until he was shown simulations.)

To answer this question, we must first carefully describe the random experiment, which is a little ambiguous. This has two parts, one is to describe the sample space, and the other is to describe MH’s decision rule, which governs the probability distribution. I claim that by rearranging the numbers we may safely assume that the contestant has chosen door number 1. 4 We now assume that the car has been placed at random, so it’s equally likely to be behind each door. We now make the following assumption on MH’s behavior (which seems to be born out by the history of the show): We assume that MH will always reveal a goat (and never the car), and that if he has a choice of doors to reveal a goat, he chooses randomly between them with equal probability.

The sample space consists of ordered pairs, the first component representing where the car is, and the second component which door MH opened. Since we have assumed that the contestant holds door 1, if the car is behind door 3, then MH must open door 2; if the car is behind door 2, then MH must open door 3; and if the car is behind door number 1, then MH is free to randomize between doors 2 and 3 with equal probability.

Here is a tree diagram for the problem:

4 The numbers on the doors are irrelevant. The doors do not even have to have numbers, they are only used so we can refer to them in a convenient fashion. That, and the fact that they did have numbers and MH referred to them as “Door number one,” “Door number two,” and “Door number three.”
By pruning the tree of zero-probability branches, we have the following sample space and probabilities:

\[S = \{(1, 2), (1, 3), (2, 3), (3, 2)\}. \]

Suppose now that MH opens door 3. This corresponds to the event

\[MH \text{ opens } 3 = \{(1, 3), (2, 3)\} \]

which has probability \(\frac{1}{6} + \frac{1}{3} = \frac{1}{2} \). The event that the car is behind the unopened door (door 2) is the event

\[car \text{ behind } 2 = \{(2, 3)\}, \]

which has probability \(\frac{1}{3} \). Now the conditional probability that the car is behind door 2 given that MH opens door 3 is given by

\[
P(car \text{ behind } 2 \mid MH \text{ opens } 3) = \frac{P(car \text{ behind } 2 \text{ and MH opens } 3)}{P(MH \text{ opens } 3)} = \frac{\frac{1}{2}}{\frac{1}{3}} = \frac{2}{3}.
\]

A similar argument shows that \(P(car \text{ behind } 3 \mid MH \text{ opens } 2) = 2/3 \).

While it is true that MH is certain to reveal a goat, the number of the door that is opened to reveal a goat sheds light on where the car is. To understand this a bit more fully, the consider a different behavioral rule for MH: open the highest numbered door (of door 2 and 3) that has a goat. The difference between this and the previous rule is that if the cars is behind 1, then MH will always open door 3. The only time he opens door 2 is when the car is behind door 3. The new probability space is:

\[S = \{(1, 2), (1, 3), (2, 3), (3, 2)\}. \]

In this case, \(P(car \text{ behind } 3 \mid MH \text{ opens } 2) = 1 \), and \(P(car \text{ behind } 2 \mid MH \text{ opens } 3) = 1/2 \).

Bertrand’s Boxes

Monty Hall dates back to my youth, but similar problems have been around longer. Joseph Bertrand, a member of the Académie Française, in fact, the Secrétaire Perpétual of the Académie
des Sciences, and the originator of the Bertrand model of oligopoly [1], struggled with explaining a similar situation.

In his treatise on probability [2], he gave the following rather unsatisfactory discussion (pages 2–3, loosely translated with a little help from Google):

2. Three boxes/cabinets are identical in appearance. Each has two drawers, and each drawer contains a coin/medal. The coins of the first box are gold; those of the second box are silver; the third box contains one gold coin and one silver coin.

One chooses a box; what is the probability of finding one gold coin and one silver coin?

There are three possibilities and they are equally likely since the boxes look identical:

One possibility is favorable. The probability is $\frac{1}{3}$.

Now choose a box and open a drawer. Whatever coin one finds, only two possibilities remain. The unopened drawer contains a coin of the same metal as the first or it doesn’t.

Of the two possibilities, only one is favorable for the box being the one with the different coins. The probability of this is therefore $\frac{1}{2}$.

How can we believe that simply opening a drawer raises the probability from $\frac{1}{3}$ to $\frac{1}{2}$?

The reasoning cannot be right. In fact, it is not.

After opening the first drawer there are two possibilities. Of these two possibilities, only one is favorable, that much is true, but the two possibilities are not equally likely.

If the first coin is gold, the other may be silver, but a better bet is that it is gold.

Suppose that instead of three boxes, we have three hundred, one hundred with two gold medals, etc. Out of each box, open a drawer and examine the three hundred medals. One hundred will be gold and one hundred will be silver, for sure. The other hundred are in doubt, chance governs their numbers.

We should expect on opening three hundred drawers to find fewer than two hundred gold pieces. Therefore the probability of a gold coin belonging to one of the hundred boxes with two gold coins is greater than $\frac{1}{2}$.

That is true, as far as it goes, but you can now do better. If a randomly selected coin is gold, the probability is $\frac{2}{3}$ that it came from a box with two gold coins.

Bibliography

5Once again, Lindsay Cleary found this for me in the basement of the Sherm (SFL).