In the sequel, V denotes a vector space defined over the field $\mathbb{F} = \mathbb{R}$ or \mathbb{C} unless otherwise specified.

Problem 1. Read from the textbook: Chapter 5, Section 1.

Problem 2 (20pts). From the textbook: Chapter 4, Problem 2.6.

Problem 3 (20pts). Let $V = \mathbb{P}_3$ be the vector space of degree at most 3 polynomials in one variable x (with complex coefficients). Let T be the linear operator $T(f) = xf' + f''$. (You don’t need to check that T is linear.)

(a) Calculate the eigenvalues of T.

(b) For each eigenvalue, find a basis of the corresponding eigenspace.

(c) Give a basis of V for which T is represented by a diagonal matrix.

Problem 4 (20pts). Let

$$A = \begin{pmatrix} 4 & 5 \\ 3 & 6 \end{pmatrix}.$$

Find a matrix B satisfying $B^2 = A$.

Problem 5 (20pts). From the textbook: Chapter 5, Problem 1.5 (a), (b).

Problem 6 (20pts). From the textbook: Chapter 5, Problem 1.7 for the case when $\mathbb{F} = \mathbb{R}$.