Math 108A Midterm Exam

1. (a) We check that d satisfies each of the axioms for a metric.
To see that d is symmetric, observe
\[d((x, y), (x', y')) = \sqrt{d_1(x, x')^2 + d_2(y, y')^2} = \sqrt{d_1(x', x)^2 + d_2(y', y)^2} = d((x', y'), (x, y)), \]
where in the second equality we’ve used the symmetry of d_1, d_2.
To see that d is positive definite, note that $d((x, y), (x', y')) = 0$ means $\sqrt{d_1(x, x')^2 + d_2(y, y')^2} = 0$, which happens if and only if $d_1(x, x') = 0, d_2(y, y') = 0$, which by positive definiteness of d_1, d_2 happens if and only if $(x, y) = (x', y')$.
To show that d satisfies the triangle inequality, choose arbitrary $(x_1, y_1), (x_2, y_2), (x_3, y_3) \in X \times Y$ and compute
\[
\begin{align*}
 d((x_1, y_1), (x_3, y_3)) &= \sqrt{d_1(x_1, x_3)^2 + d_2(y_1, y_3)^2} \\
 &\leq \sqrt{(d_1(x_1, x_2) + d_1(x_2, x_3))^2 + (d_2(y_1, y_2) + d_2(y_2, y_3))^2} \\
 &\leq \sqrt{d_1(x_1, x_2)^2 + d_2(y_1, y_2)^2 + d_1(x_2, x_3)^2 + d_2(y_2, y_3)^2} \\
 &= d((x_1, y_1), (x_2, y_2)) + d((x_2, y_2), (x_3, y_3)),
\end{align*}
\]
where in the second line we’ve used the triangle inequality for d_1, d_2 and in the third we’ve used the triangle inequality for the euclidean norm on \mathbb{R}^2.

(b) **Solution 1:** To show that $F_1 \times F_2$ is closed, it suffices to show that $(F_1 \times F_2)^c$ is open. To that end, let (x, y) be an element of $(F_1 \times F_2)^c$. Then either $x \in F_1^c$ or $y \in F_2^c$. Assume without loss of generality that $x \in F_1^c$. Since F_1 is closed, F_1^c is open, and thus there is an $r > 0$ for which the open ball $B_r(x)$ of radius r centered at x is contained in F_1^c. We claim $B_r((x, y)) \subset (F_1 \times F_2)^c$. To see this, let (x', y') be an element of $B_r((x, y))$. Then
\[
d_1(x', x) \leq \sqrt{d_1(x', x)^2 + d_2(y', y)^2} = d((x', y'), (y', y')) < r,
\]
so $x' \in B_r(x) \subset F_1^c$. Thus, $(x', y') \in (F_1 \times F_2)^c$. So indeed, $B_r((x, y)) \subset (F_1 \times F_2)^c$. Since each point of $(F_1 \times F_2)^c$ has an open neighborhood contained in $(F_1 \times F_2)^c$, $(F_1 \times F_2)^c$ is open. Thus, $F_1 \times F_2$ is closed.

Solution 2: To show that $F_1 \times F_2$ is closed, it suffices to show that if $\{(x_n, y_n)\}_{n=1}^\infty$ is a sequence of points in $F_1 \times F_2$ convergent to a limit (x, y) in X, then (x, y) is in $F_1 \times F_2$. To this end, fix $\varepsilon > 0$ and find N large enough that $d((x_n, y_n), (x, y)) < \varepsilon$ for all $n > N$. Then for all $n > N$, we have
\[
d_1(x_n, x) \leq \sqrt{d_1(x_n, x)^2 + d_2(y_n, y)^2} = d((x_n, y_n), (x, y)) < \varepsilon.
\]
Thus, $\{x_n\}_{n=1}^\infty$ converges to x. Since F_1 is closed, $x \in F_1$. By similar reasoning, $y \in F_2$. Thus, $(x, y) \in F_1 \times F_2$, which completes the proof.

2. We will define a sequence $\{a_n\}_{n \in \mathbb{N}}$ of elements of A by recursion as follows: first define $a_0 = x$.
Having defined a_0, \ldots, a_n, define a_{n+1} to be an arbitrary element of $A \setminus \{a_0, \ldots, a_n\}$. This is possible since if $A \setminus \{a_0, \ldots, a_n\} = \emptyset$, then $A \subset \{a_0, \ldots, a_n\}$, showing that A is finite, a contradiction. By
the definition, we have that \(a_i \neq a_j \) if \(i \neq j \).

Now define \(f : A \to A \setminus \{x\} \) by

\[
f(y) = \begin{cases}
a_{n+1} & \text{if } y = a_n,
y & \text{if } y \neq a_m \text{ for all } m \in \mathbb{N}.
\end{cases}
\]

Since \(y \) can be equal to at most one \(a_n \) by our construction, \(f \) is well-defined. Since \(x = a_0, x \neq a_{n+1} \) for all \(n \in \mathbb{N} \), and so \(f \) indeed maps into \(A \setminus \{x\} \).

Suppose \(y \neq z \). Then if \(y, z \in \{a_n : n \in \mathbb{N}\} \), we must have \(y = a_i \) and \(z = a_j \) for \(i \neq j \), and so \(f(y) = a_{i+1} \neq a_{j+1} = f(z) \) since \(i + 1 \neq j + 1 \). If \(y \in \{a_n : n \in \mathbb{N}\}, z \notin \{a_n : n \in \mathbb{N}\} \), then \(f(y) = a_{i+1} \neq z = f(z) \). Finally, if \(y, z \notin \{a_n : n \in \mathbb{N}\} \), then \(f(y) = y \neq z = f(z) \). Hence \(f \) is injective.

Suppose \(b \in A \setminus \{x\} \). If \(b \in \{a_n : n \in \mathbb{N}\} \), then since \(b \neq x = a_0 \), we have \(b = a_n \) for \(n > 0 \). Hence \(f(a_{n-1}) = a_n = b \). Otherwise, if \(b \notin \{a_n : n \in \mathbb{N}\} \), then \(f(b) = b \). Hence \(f \) is surjective. We have shown that \(f : A \to A \setminus \{x\} \) is a bijection, and so \(A \) is equivalent to \(A \setminus \{x\} \).

3. Suppose \(x \in \overline{E} = E \cup E' \). If \(x \in E \), then \(x \in B_r(x) \cap E \) for every \(r > 0 \). If \(x \in E' \), then by definition, \((B_r(x) \cap E) \setminus \{x\} \neq \emptyset \) for all \(r > 0 \). Hence in either case, we see that \(B_r(x) \cap E \neq \emptyset \) for all \(r > 0 \).

Now since \(\overline{E} \cap G \neq \emptyset \), fix an arbitrary \(x \in \overline{E} \cap G \). Since \(x \in G \) and \(G \) is open, there exists \(r > 0 \) such that \(B_r(x) \subseteq G \). By our result in the first paragraph, since \(x \in \overline{E} \), we have that \(B_r(x) \cap E \neq \emptyset \). Hence there exists \(y \in E \cap B_r(x) \subset E \cap G \), and so \(E \cap G \neq \emptyset \).

4. The desired result is true vacuously if \(Y \) is empty, so assume \(Y \neq \emptyset \). Then for each \(e \in E \), \(\{d(e, y) \mid y \in Y\} \) is a nonempty set of nonnegative real numbers and thus has a well-defined nonnegative infimum. For each \(e \in E \) and \(n = 1, 2, \ldots \), choose \(y_{e,n} \in Y \) with

\[
d(e, y_{e,n}) = \inf \{d(e, y) \mid y \in Y\} + \frac{1}{n}.
\]

Such a \(y_{e,n} \) exists, because if it didn’t, \(\inf \{d(e, y) \mid y \in Y\} + \frac{1}{n} \) would be a lower bound for \(\{d(e, y) \mid y \in Y\} \) greater than \(\inf \{d(e, y) \mid y \in Y\} + \frac{1}{n} \), which is absurd.

Now, let \(S = \bigcup_{n=1}^{\infty} \{y_{e,n} \mid e \in E\} \). Since \(E \) is at most countable, each \(\{y_{e,n} \mid e \in E\} \) is at most countable. Since a countable union of at most countable sets is at most countable, \(S \) is at most countable.

We claim \(S \) is dense in \(Y \). To see this, choose \(y \in Y \) and fix \(\varepsilon > 0 \). Choose an integer \(n > \frac{3}{\varepsilon} \). Since \(E \) is dense in \(X \), there is an \(e \in E \) with \(d(y, e) < \frac{\varepsilon}{3} \). We then have \(\inf \{d(e, y) \mid y \in Y\} \leq \frac{2\varepsilon}{3} \), so that

\[
d(e, y_{e,n}) \leq \frac{\varepsilon}{3} + \frac{1}{n} < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \frac{2\varepsilon}{3}.
\]

Now by the triangle inequality,

\[
d(y, y_{e,n}) \leq d(y, e) + d(e, y_{e,n}) < \frac{\varepsilon}{3} + \frac{2\varepsilon}{3} = \varepsilon.
\]

Thus, every point of \(Y \) is in the closure of \(S \). So \(S \) is the desired at most countable dense subset of \(Y \).

5. By induction on \(k \in \mathbb{N} \), it follows that \(F_{n+k} \subseteq F_n \) for all \(n, k \in \mathbb{N} \), and so \(F_m \subseteq F_n \) for any \(m \geq n \).
Solution 1: By De Morgan’s laws, from $\bigcap_{n \in \mathbb{N}} F_n \subset G$, we deduce that $G^c \subset \bigcup_{n \in \mathbb{N}} F_n^c$. Since G is open and each F_n is closed, it follows that G^c is closed and each F_n^c is open, and so $\{F_n^c\}_{n \in \mathbb{N}}$ is an open cover of G^c. Since X is compact and $G^c \subset X$ is closed, G^c is compact, and so there exists a finite subcover of G^c: $G^c \subset F_{n_1}^c \cup \cdots \cup F_{n_k}^c$. By De Morgan’s laws again, we obtain $F_{n_1} \cap \cdots \cap F_{n_k} \subset G$. Letting $N = \max\{n_i : 1 \leq i \leq k\}$, we have $F_N \subset F_{n_1}$ for each i, and so $F_N = F_{n_1} \cap \cdots \cap F_{n_k} \subset G$. So for each $n \geq N$, we have $F_n \subset F_N \subset G$. Therefore, if $F_n \not\subset G$, then $n < N$, and so $F_n \subset G$ for all but finitely many $n \in \mathbb{N}$.

Solution 2: Assume, for sake of contradiction, that $F_n \not\subset G$ for infinitely many $n \in \mathbb{N}$. Then for any $n \in \mathbb{N}$, there exists $m \geq n$ with $F_m \not\subset G$, and so if $F_n \not\subset G$, then $F_m \subset F_n \subset G$, a contradiction. This proves that our assumption implies that $F_n \not\subset G$ for all $n \in \mathbb{N}$. In particular, each $F_n \cap G^c \neq \emptyset$. Since G is open, G^c is closed, and so $\{F_n \cap G^c\}_{n \in \mathbb{N}}$ is a sequence of closed, non-empty subsets of X with $F_{n+1} \cap G^c \subset F_n \cap G^c$, since $F_{n+1} \subset F_n$. Since X is compact, each $F_n \cap G^c$ is also compact, so we can conclude by the finite intersection property that $\bigcap_{n \in \mathbb{N}} (F_n \cap G^c) \neq \emptyset$. So fix an $x \in \bigcap_{n \in \mathbb{N}} (F_n \cap G^c)$. Then $x \in \bigcap_{n \in \mathbb{N}} F_n$, but $x \not\in G$, contradicting that $\bigcap_{n \in \mathbb{N}} F_n \subset G$. So our initial assumption was false, and $F_n \subset G$ for all but finitely many $n \in \mathbb{N}$.