1. Let G be a group and let H be a non-empty subset of G, such that for every $a, b \in H$ we have $ab^{-1} \in H$. Prove that H is a subgroup of G.

2. Let G be a permutation group of a set X, such that $|X| - 2 \geq |G| \geq 2$ and that there are exactly two distinct orbits. Prove that there exists a permutation $g \in G$ that does not contain any cycles of length one in its cycle structure.

3. We have a regular three-dimensional octahedron O (that is, the Platonic solid composed of eight equilateral triangles, four of which meet at each vertex), and three colors. After making O stand vertically on one of its vertices v, we partition its faces into four triangles that compose the “top” of O, and four triangles that compose the “bottom” of O. Let u be the vertex at the top. We wish to color each of the eight triangles. Two colorings of O are considered identical if one can be obtained from the other by rotating O along the line between v and u and possibly also switching the top and the bottom (so that u and v switch). We are not allowed to rotated O such that v is neither the bottom vertex nor the top one. Use the method that we saw in Lecture 21 to count how many distinct colorings of O exist.

4. Consider the sequence with the initial conditions $a_0 = 4$, $a_1 = 16$, and the recurrence relation $a_{i+2} = a_{i+1}^{1/3} a_{i}^{2/3}$. Use generating functions to find the value of a_n. Specifically, use the techniques that we saw in Lecture 23 and write down the steps of your calculation. Do not use a computer, although you may skip uninteresting technical steps in your writing (like the detailed steps of solving a set of linear equations). Do not use any techniques that were learned after Lecture 23.

5. Let b_n denote the number of sequences of ones and zeros that are of length n and have the ones only occurring in groups of three or more. Find a recurrence relation for b_n such that the number of elements in this relation does not depend on n (for example, in the recurrence relation that we derived for the Catalan numbers, the number of elements did change according to n). Prove your answer.

6. For a positive integer n, consider the triangular integer lattice $\{(x, y) \in \mathbb{N} : 0 \leq x \leq y \leq n\}$. We travel the lattice from the point $(0, 0)$ to the point (n, n), such that at each step we either go one step to the right, one step up, or one step diagonally right and up (that is, we either increase the x-coordinate by one, increase the y-coordinate by one, or increase both coordinates by one). The path does not leave the triangular lattice at any point. Let c_n be the number of such paths.

Find a recurrence relation for c_n. Unlike the previous question, the number of elements in this relation may depend on n. (Hint: Find the first point on the path that is on the main diagonal $x = y$.) Prove your answer.