1. For integers $0 < r < n$, express $\sum_{k=r}^{n} \binom{k}{r}$ as a single binomial coefficient. Explain your answer.

2. Basic counting:
 (a) For a positive integer n satisfying $n \equiv 1 \mod 4$, how many subsets $S \subseteq \{1, 2, 3, \ldots, n\}$ satisfy that the sum of the numbers in S is larger than the sum of the numbers not in S? Explain your answer.
 (b) For positive integers n and m, consider the integer lattice $\{(x, y) \in \mathbb{N} : 0 \leq x \leq n \text{ and } 0 \leq y \leq m\}$. We travel the lattice from the point $(0, 0)$ to the point (n, m), such that at each step we either go one step to the right or one step up (that is, we either increase the x-coordinate by one, or we increase the y-coordinate by one). How many different paths are available to us? Explain your answer.

3. Prove the formula $\sum_{k=0}^{n} k\binom{n}{k} = n2^{n-1}$ for all $n \geq 1$ (hint: Start with the formula for $(x+y)^n$ and set $y = 1$).

4. Consider a connected undirected graph $G = (V, E)$ and two vertices $s, t \in V$, such that the shortest path between s and t is of length larger than $|V|/2$. Prove that there exists a vertex $v \in V \setminus \{s, t\}$ such that after removing v from G (together with the adjacent edges) there are no paths between s and t (hint: This question is related to the BFS algorithm).

5. Consider an undirected graph $G = (V, E)$ such that every edge of E is colored either red or blue. We redefine the length of a path as the number of blue edges in it. For example, two vertices with a red path between them are at a distance of 0 from each other. Perform a small change in the BFS algorithm, so that it would work according to this new definition of distance.