Naïve Path Planning

- **Problem.**
 - We are given a map with cities and non-crossing roads between pairs of cities.
 - Describe an algorithm for finding a path between city A and city B that minimizes the number of roads traveled.
Solution

- Turn the problem into a graph:
 - Every city is a **vertex**.
 - Every road is an **edge**.
 - Find a path from vertex A to vertex B that consists of a **minimum number of edges**.
 - Immediate by running **BFS** from A.

Slightly Less Naïve Path Planning

- **Problem.** Same as previous problem, except that **roads are allowed to cross** (contain intersections).
 - Minimize the number of **road segments** that were traveled.
Solution

- Turn the problem into a graph:
 - Every city and every intersection is a vertex.
 - Every road segment is an edge.
 - Find a path from vertex A to vertex B that consists of a minimum number of edges.
 - Immediate by running BFS from A.

Path Planning

- **Problem.** Given a map with roads, find a path from city A to city B, that minimizes the distance travelled.
Formulating the Problem

• Turn the problem into a graph:
 ◦ Every city and every intersection is a vertex.
 ◦ Every road segment is an edge.
 ◦ A **weight function** \(w: E \to \mathbb{R} \) that gives every edge its distance.
 ◦ Find a path from vertex \(A \) to vertex \(B \) that minimizes the sum of its edge weights.

Shortest Paths Problem

• Consider a directed graph \(G = (V, E) \) and a weight function \(w: E \to \mathbb{R} \).
• The **weight of a path** \(P \) is the sum of the weights of its edges.
• **Problem.** Given a pair of vertices \(s, t \in V \), find a **shortest path** between \(s \) and \(t \) (i.e., a path of minimum weight).
The Plan

- We consider the (common) case where the weights are non-negative.
- We describe a greedy algorithm for finding a shortest path from a vertex $s \in V$ to every other vertex of V.

Subpaths of a Shortest Path

- **Claim.** Consider a directed graph $G = (V, E)$, a weight function $w: E \to \mathbb{R}$, and a shortest path P between the vertices $s, t \in V$.
 - For any vertex $v \in P$, the segment of P between s and v is a shortest path.
Proof of Claim

• Assume for contradiction that there exists \(v \in P \) such that the segment of \(P \) from \(s \) to \(v \) is not a shortest path.
 ◦ \(P_1 \) – the segment of \(P \) from \(s \) to \(v \).
 ◦ \(P_2 \) – the segment of \(P \) from \(v \) to \(t \).
 ◦ \(\ell_1, \ell_2 \) – the weights of \(P_1, P_2 \), respectively.
 ◦ By assumption, there exists a path \(P' \) from \(s \) to \(v \) of length less than \(\ell_1 \).
 ◦ Combining \(P' \) and \(P_2 \) yields a path from \(s \) to \(t \) of length less than \(\ell_1 + \ell_2 \). **Contradiction to \(P \) being a shortest path!**

Shortest Paths Tree

• **Corollary.** There exists a tree that contains shortest paths from \(s \) to any other vertex that is accessible from it.

• We refer to such a tree as a **shortest paths tree** from \(s \).
Dijkstra’s Greedy Algorithm

- $d[v]$ – weight of the shortest path from s to v that we found so far.

- We grow the shortest paths tree in steps.
 - We start by setting $d[s] = 0$ and $d[v] = \infty$ for every $v \in V \setminus \{s\}$.
 - At each step, out of the vertices that are not in the tree, we **add the one that minimizes $d[v]$**.
 - After adding a vertex v to the tree, for every $(v, u) \in E$, we check whether
 \[d[u] > d[v] + w(v, u). \]
 If this holds, we set $d[u] = d[v] + w(v, u)$.

Dijkstra Example

![Diagram of Dijkstra's algorithm example](image-url)
Dijkstra Example (cont.)

Dijkstra Correctness

- The algorithm clearly returns a graph of paths from \(s \) to every vertex that is accessible from \(s \).
- **Claim.** The paths are determined by Dijkstra are ordered by increasing weight.
 - At each step, the algorithm takes the shortest path that it knows about.
 - Every new path that is discovered is at least as heavy as the ones that were previously chosen, since every new path is chosen path plus an additional edge.
Correctness (Partial sketch)

- One can prove, by induction on the number of elements in the tree, that the vertices \(v \in V \) are inserted into the tree in order and with correct \(d[v] \).
 - The value \(d[s] = 0 \) is correct by definition.
 - Induction step. Consider a vertex \(v \) that was just added to the tree, let \(P \) be the shortest path to \(v \), and let \(u \) be the vertex before \(v \) in \(P \).
 - That is, \(d[v] = d[u] + w(u, v) \). By the hypothesis, \(u \) is in the tree and the correct \(d[v] \) was found when we inserted \(u \) to the tree.

Travelling Salesman Problem

- Problem. Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?
The Naïve Solution

- There are \((n - 1)!!\) permutations of the cities starting at city 1. Check each path takes \(cn\) operation. So \(c \cdot n!
\)

\[
\begin{align*}
(1,2,3,4,5,6) & \Rightarrow \text{cost} = 19 \\
(1,2,3,4,6,5) & \Rightarrow \text{cost} = 34 \\
(1,2,3,5,4,6) & \Rightarrow \text{cost} = 28 \\
(1,2,3,5,6,4) & \Rightarrow \text{cost} = 15 \\
(1,2,3,6,4,5) & \Rightarrow \text{cost} = 22 \\
(1,2,3,6,5,4) & \Rightarrow \text{cost} = 19 \\
\ldots
\end{align*}
\]
Better Solutions?

- Using a technique called dynamic programming, one can obtain a running time of $c2^n n^2$.
- Finding a polynomial time algorithm or proving that such an algorithm does not exist would get you $1,000,000$!

The Millennium Prize Problem

- P versus NP.
- The Hodge conjecture.
- The Poincaré conjecture. Solved!
- The Riemann hypothesis.
- Yang–Mills existence and mass gap.
- Navier–Stokes existence and smoothness.
- The Birch and Swinnerton-Dyer conjecture.
Adding Negative Weights

• Is Dijkstra’s algorithm still correct when allowing negative weights?
 ◦ No!

\[s \quad 1 \quad t \]
\[0 \]

Adding Negative Weights (cont.)

• Is the problem even well defined when allowing negative weights?
 ◦ No! What is the weight of the shortest path from \(s \) to \(t \).
The Bellman-Ford Algorithm

- The Bellman-Ford algorithm receives a weighted directed graph, possibly with negative weights, and a vertex \(s \).
 - If there is a path from \(s \) to a negative cycle, it reports about it.
 - Otherwise, it finds shortest paths from \(s \) to any other vertex.
- We will only use this algorithm as a “black box”.

Arbitrage

- **Problem.** Given \(n \) types of currency and the conversion rates between them, describe an efficient algorithm that checks whether there exists a series of conversions that starts with 1 unit of a certain currency and ends up with more.
First Ideas

- Denote by a_{ij} the amount that we obtain by converting 1 unit of currency c_i to currency c_j.
- Build a weighted directed graph:
 - A vertex for every type of currency.
 - An edge from every vertex to every vertex.
 - The edge from c_i to c_j is of weight a_{ij}.
- A cycle $c_{i_1} \rightarrow c_{i_2} \rightarrow c_{i_3} \rightarrow \cdots \rightarrow c_{i_1}$ is of weight $a_{i_1i_2} + a_{i_2i_3} + \cdots + a_{i_ki_1}$.
 - But we are looking for $a_{i_1i_2} \cdot a_{i_2i_3} \cdots a_{i_ki_1} > 1$.

Addressing the Problem

- We are looking for a cycle $c_1 \rightarrow c_2 \rightarrow \cdots \rightarrow c_k \rightarrow c_1$ such that
 \[a_{i_1i_2} \cdot a_{i_2i_3} \cdots a_{i_ki_1} > 1 \]
 \[\log a_{i_1i_2} + \log a_{i_2i_3} + \cdots + \log a_{i_ki_1} > 0 \]
 \[-\log a_{i_1i_2} - \log a_{i_2i_3} - \cdots - \log a_{i_ki_1} < 0 \]
Example

<table>
<thead>
<tr>
<th></th>
<th>£</th>
<th>$</th>
<th>€</th>
</tr>
</thead>
<tbody>
<tr>
<td>£</td>
<td>1</td>
<td>0.2</td>
<td>0.15</td>
</tr>
<tr>
<td>$</td>
<td>4.5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>€</td>
<td>7</td>
<td>0.5</td>
<td>1</td>
</tr>
</tbody>
</table>

The Full Solution

- The algorithm.
 - Build a graph as before, but instead of weights of the form a_{ij}, use $-\log a_{ij}$.
 - Run Bellman-Ford to check whether there is a negative cycle.
 - A negative cycle corresponds to a profitable series of conversions.
 - What is missing? Bellman-Ford requires a vertex to start from.
 - We can choose any vertex because the graph is complete.
The End

BRUTE-FORCE SOLUTION: \(O(n!) \)

DYNAMIC PROGRAMMING ALGORITHMS: \(O(n^22^n) \)

SELLING ON EBAY: \(O(1) \)

STILL WORKING ON YOUR ROUTE?

SHUT THE HELL UP!

⭐️