Repeating the Basics

- We have a set of numbers
 \(X = \{1,2,3, \ldots, n\} \) and a permutation group \(G \) of \(X \).

- For example,
 \[
 X = \{1,2,3,4,5,6\}
 G = \{\text{id}, (1 \ 2), (3 \ 4), (1 \ 2)(3 \ 4)\}\]
Equivalence Classes

• The group G partitions X into **equivalence classes**.
 ◦ Two elements $x, y \in X$ are in the same class iff there exists a permutation $g \in G$ such that $g(x) = y$.

$$X = \{1, 2, 3, 4, 5, 6\}$$
$$G = \{\text{id}, (1 \ 2), (3 \ 4), (1 \ 2)(3 \ 4)\}$$

• The classes in this case are
 \{1, 2\}, \{3, 4\}, \{5\}, \{6\}.

Orbits

• The equivalence classes are also called **orbits**.
 ◦ For every $x \in X$ the orbit of x is
 $$Gx = \{\text{The equivalence class that contains } x\}$$
 $$= \{y \in X \mid g(x) = y \text{ for some } g \in G\}.$$
Another Example: Orbits

- Let $X = \{1,2,3,4\}$ and let $G = \{\text{id}, (1 \ 2 \ 3 \ 4), (1 \ 3)(2 \ 4), (1 \ 4 \ 3 \ 2),$
 $(2 \ 4), (1 \ 3), (1 \ 2)(3 \ 4), (1 \ 4)(2 \ 3)\}$.
- What are the orbits/equivalence classes that G induces on X?
 - There is a single class
 $G1 = G2 = G3 = G4 = \{1,2,3,4\}$.

Stabilizers

- The stabilizer of $x \in X$ is the set of all permutations that take x to itself (x is “stable” in them). We denote this set as G_x.
- Example.
 $X = \{1,2,3,4,5,6\}$
 $G = \{\text{id}, (1 \ 2), (3 \ 4), (1 \ 2)(3 \ 4)\}$
 $G_1 = \{\text{id}, (3 \ 4)\}$.
Example: Stabilizer

- Consider the following permutation group of \{1,2,3,4\}:
 \[G = \{\text{id}, (1 \ 2 \ 3 \ 4), (1 \ 3)(2 \ 4), (1 \ 4 \ 3 \ 2), (2 \ 4), (1 \ 3), (1 \ 2)(3 \ 4), (1 \ 4)(2 \ 3)\}. \]

- The stabilizers are
 - \(G_1 = \{\text{id}, (2 \ 4)\} \).
 - \(G_2 = \{\text{id}, (1 \ 3)\} \).
 - \(G_3 = \{\text{id}, (2 \ 4)\} \).
 - \(G_4 = \{\text{id}, (1 \ 3)\} \).

Reminder: Cosets

- Let \(H \) be a subgroup of the group \(G \). The **left coset of** \(H \) with respect to \(g \in G \) is
 \[gh = \{a \in G \mid a = gh \text{ for some } h \in H\}. \]

- **Example.** The coset of the **alternating group** \(A_n \) with respect to a **transposition** \((x \ y) \in S_n\) is the subset of odd permutations of \(S_n\).
$G(x \to y)$ are Cosets

- **Claim.** Let G be a permutation group and let $h \in G(x \to y)$. Then
 \[G(x \to y) = hG_x. \]

 ◦ (This claim was proved in the previous class.)

Sizes of Cosets and Stabilizers

- **Claim.** Let G be a permutation group on X and let G_x be the stabilizer of $x \in X$. Then
 \[|G_x| = |hG_x| \text{ for any } h \in G. \]

 ◦ **Proof.** By the Latin square property of G.

- **Corollary.** The size of $G(x \to y)$:
 - If y is in the orbit G_x then
 \[|G(x \to y)| = |G_x|. \]
 - If y is not in the orbit G_x then
 \[|G(x \to y)| = 0. \]
Sizes of Orbits and Stabilizers

• **Theorem.** Let G be a group of permutations of the set X. For every $x \in X$ we have

$$|Gx| \cdot |G_x| = |G|.$$

The orbit of x The stabilizer of x

Example: Orbits and Stabilizers

• Consider the following permutation group of $\{1,2,3,4\}$:

$$G = \{\text{id}, (1 \ 2 \ 3 \ 4), (1 \ 3)(2 \ 4), (1 \ 4 \ 3 \ 2), (2 \ 4), (1 \ 3), (1 \ 2)(3 \ 4), (1 \ 4)(2 \ 3)\}.$$

- We have $|G| = 8$.
- We have the orbit $G_1 = \{1,2,3,4\}$. So $|G_1| = 4$.
- We have the stabilizer $G_1 = \{\text{id}, (2 \ 4)\}$. So $|G_1| = 2$.
- Combining the above yields

$$|G| = 8 = |G_1| \cdot |G_1|.$$
A Useful Table

- Let $G = \{g_1, g_2, ..., g_n\}$ be a group of permutations of $X = \{x_1, x_2, ..., x_m\}$.

 - For an element $x \in X$, we build the following table, where \checkmark implies that $g_i(x) = x_j$.

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>x_7</th>
<th>...</th>
<th>x_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>g_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g_n</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table Properties 1

- How many \checkmark’s are in the table?
 - Since $g_i(x)$ has a unique value, each row contains exactly one \checkmark.
 - The total number of \checkmark’s in the table is $|G|$.

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>x_7</th>
<th>...</th>
<th>x_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>g_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g_n</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Properties 2

- How many ✓’s are in the column of x_i?
 - If x_i is not in the orbit Gx, then 0.
 - If x_i is in the orbit Gx, then
 $$|G(x \rightarrow y)| = |G_x|.$$

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>x_7</th>
<th>...</th>
<th>x_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>g_1</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g_2</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g_n</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

Proving the Theorem

- **Theorem.** Let G be a group of permutations of the set X. For every $x \in X$ we have
 $$|Gx| \cdot |G_x| = |G|.$$

- **Proof.**
 - **Counting by rows**, the number of ✓’s in the table is $|G|$.
 - **Counting by columns**, there are $|Gx|$ non-empty columns, each containing $|G_x|$ ✓’s.
 - That is, $|G| = |Gx| \cdot |G_x|$.
Double Counting

• Our proof technique was to count the same value (the number of ✓’s in the table) in two different ways.
• This technique is called **double counting** and is very useful in combinatorics.

Another Problem

• **Problem.** Consider a group of permutations G of the set X. Prove that if $x, y \in X$ are in the same orbit, then $|G_x| = |G_y|$.

• **Proof.**
 ◦ By the assumption, we have $|Gx| = |Gy|$.
 ◦ By the previous theorem
 $$|G_x| = \frac{|G|}{|Gx|} = \frac{|G|}{|Gy|} = |G_y|.$$
Distinct Identity Cards

• **(Silly) Problem.** A company produces identity cards that are 3×3 grids with holes in exactly two of the squares.

• How many distinct cards can be produced?

\[
\binom{9}{2} = 36.
\]

Distinct Identity Cards 2

• **Problem (part 2).** The identity cards are given to mathematicians, which might wear them upside down, sideways, back to front, etc.

• How many distinct cards can be produced without a chance of confusing two?
Rephrasing the Problem

- Let X be the set of the original 36 cards.
- Let G be the group of symmetries of the 3 × 3 grid (combinations of rotations and reflections taking the 3 × 3 grid to itself).
- Consider a symmetry $g \in G$.
 - Notice that g is a bijection from X to itself.
 - We think of g as a permutation of the set X.

Rephrasing the Problem (2)

- Let X be the set of the original 36 cards.
- Let G be the group of symmetries of the 3 × 3 grid.
- We think of G is a group of permutations of X.
- The number of distinct cards under the new definition is the number of different orbits of G on X.
 - We would like a simple way for computing the number of orbits.
Number of Fixed Elements

• For every $g \in G$, we define $F(g) = |\{x \in X : g(x) = x\}|$.
 ◦ $F(g)$ is the number of stabilizers that contain g.

• Example. Consider the following permutation group of $\{1,2,3,4\}$.
 $G = \{\text{id}, (1 \ 2 \ 3 \ 4), (1 \ 3)(2 \ 4), (1 \ 4 \ 3 \ 2),
 (2 \ 4), (1 \ 3), (1 \ 2)(3 \ 4), (1 \ 4)(2 \ 3)\}$.
 ◦ $F(\text{id}) = 4$.
 ◦ $F((1 \ 3)) = 2$.
 ◦ $F((1 \ 2)(3 \ 4)) = 0$.

The Number of Distinct Orbits

• Claim. Let G be a group of permutations of the set X. The number of orbits of G on X is

$$\frac{1}{|G|} \sum_{g \in G} |F(g)|.$$

(= the average size of $F(g)$)
Proof by Double Counting

- We **double count** the size of the set $E = \{(g, x) \mid g \in G, x \in X, g(x) = x\}$.

- **For a fixed** $g \in G$, the number of pairs in E that contain g is $F(g)$. That is
 \[|E| = \sum_{g \in G} F(g). \]

- **For a fixed** $x \in X$, the number of pairs that contain x is $|G_x|$. That is,
 \[|E| = \sum_{x \in X} |G_x|. \]

Proof (cont.)

- The double counting implies
 \[\sum_{g \in G} |F(g)| = \sum_{x \in X} |G_x|. \]
 - Recall that if $x, y \in X$ are in the same orbit, then $|G_x| = |G_y|$.
 - An orbit Gx corresponds to $|Gx|$ elements of the red sum, each of size $|G_x|$. Thus, the orbit contributes to the sum $|Gx||G_x| = |G|$.
 - If there are t orbits then
 \[\sum_{g \in G} |F(g)| = t|G| \quad \Rightarrow \quad t = \frac{\sum_{g \in G}|F(g)|}{|G|}. \]
Back to Identity Cards

• **Recall.** In the **identity cards problem** we have a set X of 36 cards. The number of **distinct** cards is the number of orbits under the group G of card symmetries.
 ◦ That is, we need to calculate
 $$\frac{\sum_{g \in G} |F(g)|}{|G|}.$$

Counting $|G|$ and $|F(g)|$

• Symmetries of the 3×3 grid and the number of elements they fix:

<table>
<thead>
<tr>
<th>Symmetry g</th>
<th>$F(g)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity</td>
<td>36</td>
</tr>
<tr>
<td>Rotation 90°</td>
<td>0</td>
</tr>
<tr>
<td>Rotation 180°</td>
<td>4</td>
</tr>
<tr>
<td>Rotation 270°</td>
<td>0</td>
</tr>
<tr>
<td>Reflection: main diagonal</td>
<td>6</td>
</tr>
<tr>
<td>Reflection: other diagonal</td>
<td>6</td>
</tr>
<tr>
<td>Reflection: vertical bisector</td>
<td>6</td>
</tr>
<tr>
<td>Reflection: horizontal bisector</td>
<td>6</td>
</tr>
</tbody>
</table>
More Counting

- There are eight symmetries of a card, so $|G| = 8$.
- We have
 \[\sum_{g \in G} F(g) = 36 + 0 + 4 + 0 + 6 + 6 + 6 + 6. \]
- Therefore, the number of distinct cards/orbits is
 \[\frac{1}{|G|} \sum_{g \in G} F(g) = \frac{1}{8} \cdot 64 = 8. \]

Necklaces

- **Problem.** Necklaces are manufactured by arranging 13 blue beads and three red beads on a loop of string. How many such distinct necklaces are there?
Necklaces Solution

- Think of the necklace as a **regular 16-gon**.
 - The number of general configurations is $\binom{16}{3} = 560$.
 - Two necklaces are identical if their 16-gons are identical under **rotations and reflections** (that is, under a **symmetry**).
 - The number of distinct necklaces is the **number of orbits** under the symmetry group of the 16-gon.

- To count distinct necklaces, we count the **number of symmetries** and the **number of elements fixed by each symmetry**.
 - The **identity** symmetry fixes all 560 elements.
 - There are 15 rotations of angles $\frac{2\pi n}{16}$ where $1 \leq n \leq 15$. These **do not fix any elements**.
 - 8 reflections across lines that connect middles of opposite edges. **Do no fix anything**.
 - 8 reflections across lines that connect opposite points. **Each fixing 2 \cdot 7 = 14 configurations**.

- The number of distinct necklaces/orbits is
 \[\frac{\sum_g |F(g)|}{|G|} = \frac{672}{32} = 21. \]
The End: A Bad Joke

Why did the algorithmist die in the shower?

Because the shampoo said:

LATHER. RINSE. REPEAT.