Map Coloring

- Can we color each state with one of three colors, so that no two adjacent states have the same color?
Map Coloring and Graphs

- Place a vertex in each state/face.
Map Coloring and Graphs

Place a vertex in each state/face.
Place an edge between every pair of vertices that represent adjacent faces.

Map Coloring and Graphs

- The problem. Can we color the vertices using k colors, such that every edge is adjacent to two different colors?
- Such a coloring is called a k-coloring.
Scheduling Exams

• **Problem.** We wish to set dates for the exams of every course in *Caltech.*
 ◦ Two exams cannot be on the same day if the classes have at least one student in common.
 ◦ How many exam days are necessary?

Solution

• **Solution.** Build a graph:
 ◦ A vertex for every class.
 ◦ An edge between every pair of classes with at least one common student.
 ◦ Find the minimum k such that the graph is k-colorable. Every color corresponds to a different date.
The Case of Two Colors

- **Problem.** Given a graph $G = (V, E)$, check whether it has a 2-coloring.

Bipartite Graphs

- An undirected graph is **bipartite** if it admits a 2-coloring.
- We can partition the vertices of a bipartite graph into two sets, with every edge having one vertex in each set.
Problem: Prime Sums

- **Question.**
 - Let $G = (V, E)$ be an undirected graph with a vertex set $V = \{1, 2, \ldots, n\}$.
 - There is an edge between vertices i and j if and only if $i + j$ is prime.
 - Is G bipartite?

- **Yes!** We can put every odd number on one side and every even number on the other.
Bipartite Graphs Characterization

• **Claim.** A graph \(G = (V, E) \) is bipartite if and only if it does not contain **cycles of odd length.**

Proof: One Direction

• **Assume** that \(G \) is bipartite and prove that \(G \) contains no odd-length cycles:
 ◦ Every edge connects the two sides of \(G \).
 ◦ A path that starts and ends in the same side must have an **even number of edges.**
 ◦ Any cycle must have an even number of edges.
Proof: The Other Direction

- Assume that G contains no odd-length cycles and prove that G is bipartite:
 - If G is not connected, we prove the claim for each connected component separately. Thus, assume that G is connected.
 - We prove the claim by describing an algorithm that finds a 2-coloring of G.

2-Coloring Algorithm

- Run the **BFS algorithm** from an arbitrary vertex v.
- Color the vertices of odd levels **red**, and vertices of even levels **blue**.
Correctness of the Algorithm

- **Prove.** No edge is *monochromatic*:
 - An edge of G either connects vertices in consecutive levels of the BFS tree, or vertices in the same level.
 - An edge between consecutive levels connects a **blue vertex** and a **red vertex**.
 - It remains to prove that no edge connects two vertices from the same level.

Correctness of the Algorithm (2)

- **For contradiction**, assume that the edge $(u, v) \in E$ where $u, v \in V$ are in the same level of the BFS tree.
- Let s be their **lowest common ancestor**.
- Let P denote the path between s and u. Let Q denote the path between s and v.
- If P is of length n, so is Q.
- Connecting P, Q, and the edge (u, v) yields a cycle of length $2n + 1$. **Contradiction!**
A More General Algorithm

- **Problem.** Change the previous algorithm so that it receives any graph \(G \).
 - If \(G \) is bipartite, output a 2-coloring.
 - Otherwise, output an error message.

Solution

- Change the BFS so that when it examines an edge, it checks whether both of its endpoints are on the same level:
 - **If we find such an edge, we stop the algorithm and output an error message.**
Example

Who’s suing who in the mobile business

Example (cont.)
The Four Color Theorem

- **Theorem.** Every map has a 4-coloring.
 - Asked over 150 years ago.
 - Over the decades several false proofs were published.
 - Proved in 1976 by Appel and Haken. Extremely complicated proof that relies on a computer program.

The Four Color Theorem

- **Question.** Does the four color theorem imply that every graph has a 4-coloring?
 - No! While every map corresponds to a graph, most graphs do not correspond to a map.
 - (Graphs that correspond to a map are called planar and can be drawn without edge crossings.)
Coloring Graphs with Bounded Degrees

- **Problem.** Show that any graph $G = (V, E)$ with every vertex of V of degree at most k admits a $(k + 1)$-coloring.

- **Proof.**
 - At each step choose an arbitrary uncolored vertex v.
 - Since v has at most k neighbors, one of the $k + 1$ colors must be OK for v.

Example: $k + 1$-coloring

```
1 2 3 4 5 6
```
Sometimes We Cannot Do Better

- K_n - complete graph of n vertices.
- Max degree: $n - 1$.
- Colors needed: n.

- C_n - cycle of odd length n.
- Max degree: 2.
- Colors needed: 3.

Better Graph Coloring

- **Problem.** Show that if a graph $G = (V, E)$ satisfies:
 - Every vertex of V has degree at most k.
 - G is connected.
 - At least one vertex has degree $< k$.

 Then G has a k-coloring.

For a proof check your solution of the third assignment.
3-Colorable Graphs

- **Problem.** Let $G = (V, E)$ be a graph that is 3-colorable, and let $n = |V|$.
 - Describe an efficient algorithm for coloring G with $4\sqrt{n}$ colors.

- **Observation.** For any $v \in V$, the set of neighbors of v can be colored using two colors.
 - Otherwise, we would need four colors to color v and its neighbors.

Solution

- **Algorithm:**
 - As long as there is a vertex v of degree at least \sqrt{n}, color v with one new color and then color v’s neighbors with two other new colors. Then remove v and its neighbors.
 - At each step we remove at least $\sqrt{n} + 1$ vertices, so there are less than \sqrt{n} steps.
 - This step requires *less than* $3\sqrt{n}$ colors.
 - When all the remaining vertices have degree at most $\sqrt{n} - 1$, we know how to color the graph using *at most* \sqrt{n} colors.
3-Colorable Graphs are Frustrating!

- It is **probably impossible** to color every 3-colorable graph in a reasonable time, using a constant number of colors.
- In 2007, Chlamtac presented an efficient algorithm for coloring using $cn^{0.2072}$ colors.
 - This algorithm is WAY TOO COMPLICATED for us to discuss.

The End: Three utilities problem