
Chapter 4: Constant-degree Polynomial

Partitioning

Adam Sheffer

May 1, 2015

In this chapter we present a different way of deriving incidence bounds by using
polynomial partitioning. This method yields slightly worse bounds but makes it
significantly simpler to derive incidence bounds in R

d for d ≥ 3.

1 Motivation: Incidences in higher dimensions

To see the issues that arise when studying incidence problems in higher dimensions,
we consider one of the simplest cases: Incidences between m points and n planes in
R3. To see that this problem is not interesting, we consider the following point-plane
configuration. Let ℓ ⊂ R3 be a line, let P be a set of m points on ℓ, and let H
be a set of n planes that contain ℓ (e.g., see Figure 1). This construction satisfies
I(P,H) = mn, implying that the problem is trivial.

Figure 1: By having all the planes contain a given line, we can obtainmn point-plane incidences.

There are several ways to turn the problem into a non-trivial one with various
applications. We consider the problem that is obtained by adding the restriction
that the incidence graph of P ×H does not contain a copy of Ks,t. This problem is
interesting (and open), and to obtain some bound for it we try to adapt our proof for
the case of point-curve incidences in R2.

By inspecting our weak incidence bound (Lemma 2.3 of Chapter 3), we notice
that it is not only valid for planar curves, but also for any set of varieties in Rd. In
fact, this lemma is just a bound on the number of edges in a bipartite graph with
no copy of Ks,t, and has nothing geometric about it. We thus have the weak bound

I(P,H) = Os,t

(

mn1− 1

s + n
)

. The polynomial partitioning theorem also applies in
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any dimension, and we can use it to partition P. In fact, repeating the analysis for
the incidences in the cells is straightforward. However, handling incidences on the
partitioning itself becomes rather difficult. The partition is a two-dimensional variety
of a large degree, and it can contain many of the points and intersect many of the
planes. It is not easy to bound the number of incidences in this case, and it becomes
increasingly difficult in higher dimensions.

In this chapter we discuss a method for handling incidences in higher dimensions,
which was introduced by Solymosi and Tao [4]. The basic idea in this method is
to use a partitioning polynomial of a constant degree (that is, the degree does not
depend on the size of the input). When dealing with such a partition, handling the
number of incidences on the partition becomes much simpler. However, currently it
is not known how to apply this technique without losing an ε in the exponent of the
incidence bound.

2 The Szemerédi-Trotter theorem yet again

Instead of immediately considering incidences in higher dimensions, we first use
constant-degree partitioning polynomials1 to prove a weaker version of the Szemerédi-
Trotter theorem. This allows us to see how the technique works without also handling
the additional issues that arise in higher dimensions.

Theorem 2.1. Let P be a set of m points and let L be a set of n lines, both in R2.
Then for any ε > 0, we have I(P,L) = Oε(m

2/3+εn2/3 +m+ n).

Proof. We prove the theorem by induction on m+n. Specifically, we prove by induc-
tion that, for any fixed ε > 0, there exist constants α1, α2 such that

I(P,L) ≤ α1m
2/3+εn2/3 + α2(m+ n).

For the induction basis, the bound holds for small m+ n (e.g., for m+ n ≤ 100)
by taking α1 and α2 to be sufficiently large.

For the induction step, we first recall our weak incidence bound (Lemma 2.3 of
chapter 3), which implies I(P,L) = O(m

√
n + n). This completes the proof of the

theorem if m = O (
√
n) (the resulting bound is O(n) in this case). Thus, we may

assume that
n = O

(

m2
)

. (1)

We take r to be a sufficiently large constant, whose value depends on ε and will
be determined below. Let f be an r-partitioning polynomial of P. According to the
polynomial partitioning theorem, f is of degree O(r) and Z(f) partitions R2 into
connected cells, each containing at most m/r2 points of P. By Warren’s theorem
(Theorem 1.2 of Chapter 3), the number of cells is c = O(r2). The relations between

1As usual, there is no standard name for this technique. Some papers refer to it as “low degree
polynomial partitioning”.
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the constants of this proof are2

2ε ≪ r ≪ α2 ≪ α1.

Let L0 denote the subset of lines of L that are fully contained in Z(f), and let
P0 = P ∩ Z(f). Denote the cells of the partition as K1, . . . , Kc. For i = 1, . . . , c, put
Pi = P ∩Ki and let Li denote the set of lines of L that intersect Ki. Notice that

I(P,L) = I(P0,L0) + I(P0,L \ L0) +

c
∑

i=1

I(Pi,Li). (2)

For any line ℓ ∈ L \ L0, by Bézout’s theorem (Theorem 5.1 of Chapter 2), ℓ and
Z(f) have O(r) common points. This immediately implies

I(P0,L \ L0) = O(nr). (3)

Set m0 = |P0| and m′ = m − m0; that is, m′ is the number of points of P that
are in the cells. Since f is of degree O(r), we get that Z(f) can fully contain at most
O(r) lines. This in turn implies

I(P0,L0) = O(m0r). (4)

It remains to bound
∑c

i=1 I(Pi,Li). For i = 1, . . . , c, put mi = |Pi| and ni = |Li|.
Note that m′ =

∑c
i=1

mi, and recall that mi ≤ m/r2 for every 1 ≤ i ≤ c. By the
induction hypothesis, we have

c
∑

i=1

I(Pi,Li) ≤
c
∑

i=1

(

α1m
2/3+ε
i n

2/3
i + α2(mi + ni)

)

≤ α1

(m

r2

)2/3+ε
c
∑

i=1

n
2/3
i + α2

(

m′ +

c
∑

i=1

ni

)

. (5)

The above bound of O(r) on the number of intersection points between a line
ℓ ∈ L\L0 and Z(f) implies that each line enters O(r) cells (a line has to intersect Z(f)
when moving from one cell to another). This implies

∑c
i=1 ni = O(nr). Combining

this with Hölder’s inequality (e.g., see Chapter 3 just before Lemma 2.3) implies

c
∑

i=1

n
2/3
i = O

(

(nr)2/3 · r2/3
)

= O
(

n2/3r4/3
)

. (6)

By combining (5) and (6), we obtain

c
∑

i=1

I(Pi,Li) = O

(

α1m
2/3+εn2/3

r2ε
+ α2nr

)

+ α2m
′.

2The expression a ≪ b means that we take b to be sufficiently larger than a, so that some
corresponding inequalities would hold.
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Combining this with (3) and (4) yields

I(P,L) = O

(

α1m
2/3+εn2/3

r2ε
+ α2nr +m0r

)

+ α2m
′.

By taking α2 to be sufficiently large with respect to r and the constant in the
O(·)-notation, we get

I(P,L) = O

(

α1m
2/3+εn2/3

r2ε
+ α2nr

)

+ α2(m
′ +m0)

= O

(

α1m
2/3+εn2/3

r2ε
+ α2nr

)

+ α2m. (7)

Recall that (1) states that n = O (m2). This implies n = n2/3n1/3 = O(m2/3n2/3).
By taking α1 to be sufficiently large with respect to α2, r, and the constant in the
O(·)-notation in (7), we obtain O(α2nr) ≤ α1

2
m2/3n2/3. Similarly, by taking r to be

sufficiently large with respect to ε and the constant in the O(·)-notation in (7), we
may assume that

O

(

α1m
2/3+εn2/3

r2ε

)

≤ α1

2
m2/3+εn2/3.

Combining this with (7) completes the induction step, and thus the proof of the
theorem.

Remarks. (i) Already in R2 it is simpler to handle incidences on the partition
when it is of a constant degree.

(ii) Without the extra ε in the exponent of the bound of Theorem 2.1, the induction
step would have failed. Specifically, when using the induction hypothesis to sum up
the incidences inside of the cells, we would have obtained an expression that has the
correct asymptotic value, but with a leading constant that is larger than the one
we started with. A similar situation always occurs when using the constant-degree
partitioning technique, and this seems to be the main disadvantage of this technique.

(iii) We still rely on the weak combinatorial bound (Lemma 2.3 of Chapter 3).
Although we do not apply this bound in every cell as before, it is required in a different
part of the proof.

3 The Szemerédi-Trotter theorem in C
2

Now that we have some understanding of constant-degree partitioning polynomials,
we use them to handle a more difficult problem — the Szemerédi-Trotter theorem in
C2. That is, we have a set P ⊂ C2 of m points and a set L of n lines in C2. One
can think of a complex line as the zero set (over the complex numbers) of a linear
polynomial with coefficients in C.

Theorem 3.1. Let P be a set of m points and let L be a set of n lines, both in C2.
Then for any ε > 0, we have I(P,L) = Oε(m

2/3+εn2/3 +m+ n).
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To prove Theorem 3.1, we consider C2 as R4. That is, a point (a+ ib, c+ id) ∈ C2

is considered as the point (a, b, c, d) ∈ R4, and the set P becomes a set of m points
in R

4. Given a line ℓ in C
2, we can write ℓ = Z((a + ia′)y + (b + ib′)x + (c + ic′))

for some constants a, a′, b, b′, c, c′ ∈ R. A point (x1 + ix2, x3 + ix4) ∈ C2 is in ℓ if and
only if

(a+ ia′)(x3 + ix4) + (b+ ib′)(x1 + ix2) + (c+ ic′) = 0,

or equivalently,

bx1 − b′x2 + ax3 − a′x4 + c = 0 and b′x1 + bx2 + a′x3 + ax4 + c′ = 0.

Thus, when considering ℓ as being in R4, it is defined by two linear equations. It
is not difficult to verify that each equation defines a distinct hyperplane, and that
these two hyperplanes are not parallel. That is, ℓ becomes a 2-flat in R4.

We reduced the complex Szemerédi-Trotter problem to an incidence problem be-
tween a set P of m points and a set H of n 2-flats, both in R

4. If these were general
2-flats, we could have obtained mn incidences by using the same construction as in
Section 1. Fortunately, 2-flats that arise from complex lines have additional prop-
erties, and we rely on the following one. Since two complex lines in C2 intersect in
at most one point, any two 2-flats of H intersect in at most one point. We are now
ready to use constant-degree polynomial partitioning.

Theorem 3.2. Let P be a set of m points and let H be a set of n 2-flats, both in R2,
such that any two 2-flats of H intersect in at most one point. Then for any ε > 0 we
have I(P,H) = Oε(m

2/3+εn2/3 +m+ n).

Notice that Theorem 3.1 is an immediate corollary of Theorem 3.2.

Proof. We imitate the proof of Theorem 2.1, although this requires handling several
new issues that arise in R

4. We prove the theorem induction on m+ n. Specifically,
we prove by induction that, for any fixed ε > 0, there exist constants α1, α2 such that

I(P,H) ≤ α1m
2/3+εn2/3 + α2(m+ n).

For the induction basis, the bound holds for small m+ n (e.g., for m+ n ≤ 100)
by choosing α1 and α2 sufficiently large.

For the induction step, we notice that the restriction on the 2-flats of H implies
that the incidence graph contains no copy of K2,2. As before, our weak incidence
bound (Lemma 2.3 of chapter 3) implies I(P,H) = O(m

√
n+n). This completes the

proof of the theorem if m = O (
√
n) (the resulting bound is O(n) in this case). Thus

we may assume that
n = O

(

m2
)

. (8)

We take r to be a sufficiently large constant, whose value depends on ε and will
be determined below. Let f be an r-partitioning polynomial of P. According to the
polynomial partitioning theorem, f is of degree O(r) and Z(f) partitions R4 into
connected cells, each containing at most m/r4 points of P. By Warren’s theorem
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(Theorem 1.2 of Chapter 3), the number of cells is c = O(r4). As in the proof of
Theorem 2.1, the relations between the constants of this proof are

2ε ≪ r ≪ α2 ≪ α1.

Denote the cells of the partition as K1, . . . , Kc. For i = 1, . . . , c, put Pi = P ∩Ki

and let Hi denote the set of 2-flats of H that intersect Ki. Let H0 denote the subset
of 2-flats of H that are fully contained in Z(f), and let P0 = P ∩ Z(f). Notice that

I(P,H) = I(P0,H0) + I(P0,H \H0) +

c
∑

i=1

I(Pi,Hi). (9)

Unlike in the planar case, we cannot rely on Bézout’s theorem (Theorem 5.1 of
Chapter 2) to bound the number of cells that are intersected by a 2-flat h ∈ H.
Instead, we use the following theorem.

Theorem 3.3 (Barone and Basu [1]). Let U,W be varieties in Rd such that
dimU = d′, degU = kU , W is defined by a single polynomial of degree kW , and

kW ≥ 2kU . Then the number of connected components of U \W is Od

(

kd′

Wkd−d′

U

)

.

Notice that every cell of the partition that is intersected by a 2-flat h ∈ H corre-
sponds to at least one connected component of h\Z(f). By Theorem 3.3 with U = h
and W = Z(f), we get that h intersects O(r2) cells.

Bounding
∑c

i=1 I(Pi,Hi). For i = 1, . . . , c, put mi = |Pi| and ni = |Hi|. We also
set m′ =

∑c
i=1mi, and recall that mi ≤ m/r4 for every 1 ≤ i ≤ c. By the induction

hypothesis, we have

c
∑

i=1

I(Pi,Hi) ≤
c
∑

i=1

(

α1m
2/3+ε
i n

2/3
i + α2(mi + ni)

)

≤ α1

(m

r4

)2/3+ε
c
∑

i=1

n
2/3
i + α2

(

m′ +

c
∑

i=1

ni

)

. (10)

The above bound of O(r2) on the number of cells that are intersected by a 2-flat
implies

∑c
i=1 ni = O(nr2). Combining this with Hölder’s inequality (e.g., see Chapter

3 just before Lemma 2.3) implies

c
∑

i=1

n
2/3
i = O

(

(

nr2
)2/3 · r4/3

)

= O
(

n2/3r8/3
)

. (11)

By combining (10) and (11), we obtain

c
∑

i=1

I(Pi,Hi) = O

(

α1m
2/3+εn2/3

r4ε
+ α2nr

2

)

+ α2m
′.
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As in the proof of Theorem 2.1, Equation (8) implies n = O(m2/3n2/3). Thus, by
taking α1 to be sufficiently large with respect to α2 and r, we have

c
∑

i=1

I(Pi,Hi) = O

(

α1m
2/3+εn2/3

r4ε

)

+ α2m
′.

Finally, by taking r to be sufficiently large with respect to ε and the constant of
the O(·)-notation, we have

c
∑

i=1

I(Pi,Hi) ≤
α1

3
m2/3+εn2/3 + α2m

′. (12)

Bounding I(P0,H \ H0). If a 2-flat h ∈ H is not fully contained in Z(f), then
Z(f) ∩ h is at most one-dimensional. Specifically, Z(f) ∩ h is a variety of dimension
at most one and of degree O(r) (since it is defined by the linear equations that
define h and by f). We denote the set of these lower-dimensional varieties as Γ =
{h ∩ Z(f) : h ∈ H \ H0}. We perform a generic rotation of R4 around the origin
and then project P0 and Γ onto the x1x2-plane. That is, we apply the projection
π(x1, x2, x3, x4) = (x1, x2) (a generic rotation followed by the projection π is equivalent
to a projection onto a generic 2-flat of R4).

We sidetrack from the proof for a quick discussion about projections of varieties.
Let U ⊂ Rd be a variety of degree k and of dimension d′, and let π : Rd → Re

be a projection. The image of the projection π(U) is not necessarily a variety. For
example, the image of the projection of V (xy − 1) ⊂ R2 onto the x-axis is the set
{x ∈ R2 : x 6= 0}, which is not a variety (see Figure 2). However, π(U) is contained
in a variety of dimension at most d′ (e.g., see [2, Proposition 2.8.6]) and of degree
Ok,d(1).

3 We denote this variety as π(U).

Figure 2: The curve V(xy − 1).

Returning to the proof of Theorem 3.2, we set |P0| = m0,

P ′ = {π(p) : p ∈ P}, and Γ′ = {π(γ) : γ ∈ Γ}.

The projection of Γ might result in new intersection points between the varieties
of Γ′. However, since we first perform a generic rotation, we may assume that the
projection does not lead to new incidences, and that the points of P ′ and curves of

3I still need to add a proper reference for the degree property.
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Γ′ are distinct. That is, the incidence graph of P ′ × Γ′ does not contain a copy of
K2,2. We apply our point-curve incidence result in R2 (Theorem 2.1 of Chapter 3),
although we need to be careful about a couple of minor issues. First, the varieties
of Γ′ might not be irreducible. Since each variety of Γ′ is of degree Or(1), we can
decompose each curve into Or(1) irreducible curves, obtaining a total of Or(n) curves.
Another issue is that some of the elements of Γ might be zero-dimensional. This is
not a real issue, since the proof of the planar incidence theorem remains valid also
when some of the varieties are zero-dimensional. Thus, we have

I(P0,H \H0) = Or

(

m2/3n2/3 +m0 + n
)

.

As before, by using (8) and taking α1 and α2 to be sufficiently large with respect
to r and the constant of the O(·)-notation, we have

I(P0,H \H0) ≤
α1

3
m2/3n2/3 +

α2

2
m0. (13)

Bounding I(P0,H0). As in previous proofs, we consider separately singular and
regular points of Z(f). Consider a point p ∈ P0 such that p is incident to two 2-flats
h, h′ ∈ H0. We perform a translation of R4 so that p becomes the origin. We can
then think of h and h′ as vector subspaces. By the assumption of the theorem, h
and h′ intersect only in p, which in turn implies that the vector spaces h and h′ span
all of R4 together. However, since both h and h′ are fully contained in Z(f), their
tangent 2-flats at p are fully contained in the tangent hyperplane to Z(f) at p, which
is impossible. That is, the tangent to Z(f) at p is not well defined, so p is a singular
point of Z(f).

The above implies that at most one plane of H0 can be incident to a point of
P0 that is a regular point of Z(f). That is, such regular points contribute O(m0)
incidences to I(P0,H0).

To handle the singular points, we denote by Zsing the set singular points of Z(f).
By Theorem 4.1 of Chapter 2, the set Zsing is of dimension at most two and of degree
Or(1). Thus, Zsing fully contains Or(1) 2-flats ofH0 and these yield Or(m0) incidences
with the points of P0. The 2-flats of H0 that are not fully contained in Zsing intersect
Zsing in varieties that are at most one-dimensional and of degree Or(1). These can
be handled by projecting them onto a two-dimensional plane, just as we did in the
case of I(P0,H\H0). As before, this leads to Or

(

m2/3n2/3 +m0 + n
)

incidences. By
combining the singular and regular cases, we get

I(P0,H0) = Or

(

m2/3n2/3 +m0 + n
)

.

Once again, by using (8) and taking α1 and α2 to be sufficiently large with respect
to r and the constant of the O(·)-notation, we have

I(P0,H0) ≤
α1

3
m2/3n2/3 +

α2

2
m0. (14)

The induction step is obtained by combining (12), (13), and (14), and this in turn
completes the proof of the theorem.
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It is not easy to remove the ε from the exponent in the bound of Theorem 3.2, and
Zahl [6] managed to do this by using a rather complicated analysis. An alternative
proof that does not rely on the polynomial method and leads to a bound with no ε
was obtained by Tóth [5]. It is also not easy to extend the above analysis to general
complex curves (although the specific case of complex unit circles can be handled by
adding one extra combinatorial trick; see [4]). A significantly more involved analysis
that extends the above proof to general complex curves was derived by Sheffer and
Zahl [3].

Solymosi and Tao proved Theorem 3.2 by deriving a more general bound, using a
proof that goes along the same lines as the one presented above.

Theorem 3.4 (Solymosi and Tao [4]). Let P be a set of m points and let V denote
a set of varieties of degree at most k,4 both in Rd, such that

• The dimension of every variety of V is at most d/2.

• The incidence graph contains no copy of K2,t.

• There are no incidences between a point p ∈ P and a variety U ∈ V where p is
a singular point of U .

• If a point p ∈ P is incident to two varieties U,W ∈ V and p is a regular point
of both U and W , then the tangents to U and W at p intersect only in p (this
property is sometimes called transversality).

Then I(P,V) = Oε,k,d,t(m
2/3+εn2/3 +m+ n).

References

[1] S. Barone, and S. Basu, Refined bounds on the number of connected components
of sign conditions on a variety, Discrete Comput. Geom. 47 (2012), 577–597.

[2] J. Bochnak, M. Coste, and M. Roy, Real Algebraic Geometry, Springer-Verlag,
Berlin, 1998.

[3] A. Sheffer and J. Zahl, Point-curve incidences in the complex plane,
arXiv:1502.07003.

[4] J. Solymosi and T. Tao, An incidence theorem in higher dimensions, Discrete
Comput. Geom. 48 (2012), 255–280.
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