Note: Bring your solutions either to my office Sloan 264 or drop them in my mailbox but don’t put them in the Ma160 mailbox.

1) Let K_p be a local field containing a primitive l-th root of unity where l is a prime number and recall the Hilbert symbol
\[
\left(\frac{\alpha, \beta}{p} \right) := \rho_p(\beta) \in \mu_l
\]
where
\[
\rho_p : K_p^\times \to \text{Gal}(K_p(\sqrt[l]{\alpha})/K_p) \subseteq \mu_l
\]
is the local reciprocity map for the extension $K_p(\sqrt[l]{\alpha})/K_p$ followed by the map $\sigma \mapsto (\sqrt[l]{\alpha})^{\sigma - 1}$ from Kummer theory. It is a bilinear map
\[
K_p^\times/(K_p^\times)^l \times K_p^\times/(K_p^\times)^l \to \mu_l.
\]

a) Show that
\[
\left(\frac{\alpha, \beta}{p} \right) = 1
\]
if $\alpha + \beta \in (K_p^\times)^l$ (Hint: Show that $\gamma^l - \alpha$ is a norm from $K_p(\sqrt[l]{\alpha})$ for any γ). Deduce that
\[
\left(\frac{\alpha, -\alpha}{p} \right) = \left(\frac{\alpha, 1 - \alpha}{p} \right) = 1.
\]

b) Show that the Hilbert symbol is anti-symmetric, i.e.
\[
\left(\frac{\alpha, \beta}{p} \right) = \left(\frac{\beta, \alpha}{p} \right)^{-1}
\]
by evaluating $\left(\frac{\alpha, -\alpha \beta}{p} \right)$.

2) Let K be a number field containing a primitive third root of unity. For $\alpha \in O_K$ and a prime $p \nmid 3\alpha$ define the cubic residue symbol (which just for this exercise we denote like the quadratic residue symbol)
\[
\left(\frac{\alpha}{p} \right) \in \mu_3
\]
as the unique third root of unity congruent to $\alpha^{p^{l-1}}$ modulo p. If $\beta \in O_K$ is prime to 3α with prime factorization $(\beta) = p_1 \cdots p_r$ define
\[
\left(\frac{\alpha}{\beta} \right) = \left(\frac{\alpha}{p_1} \right) \cdots \left(\frac{\alpha}{p_r} \right).
\]
a) Show that \(\left(\frac{\alpha}{p} \right) = 1 \) if and only if \(\alpha \) is a third power modulo \(p \)

b) For \(\alpha \in O_K \) and for each prime \(p \) of \(K \) let \(\rho_p \) be the map (1) for \(l = 3 \). For \(\beta \) prime to \(3 \alpha \) show that
\[
\prod_{p|\alpha} \rho_p(\beta) = \prod_{p|\beta} \rho_p(\beta) = \left(\frac{\alpha}{\beta} \right).
\]

c) For \(\beta \) as in b) and \(\alpha \) prime to 3 show
\[
\prod_{p|\alpha, p \nmid 3} \rho_p(\beta) = \left(\frac{\beta}{\alpha} \right)^{-1}
\]
and deduce the cubic reciprocity law
\[
\left(\frac{\alpha}{\beta} \right) \left(\frac{\beta}{\alpha} \right)^{-1} = \prod_{p|3} \rho_p(\beta)^{-1}.
\]

c) To complete the reciprocity law one needs to compute the Hilbert symbol for \(K_p \) for \(p \mid 3 \). Assume now \(K_p \cong \mathbb{Q}_3(\zeta_3) \) and let \(\pi = 1 - \zeta_3 \) be a uniformizer. Show that
\[
K_p^\times/(K_p^\times)^3 \cong \mathbb{Z}/3 \times \{ 1 \} \times \{ 2 \} \times \{ 2 - 3\zeta_3 \} \times \mathbb{Z}/3
\]
and
\[
\left(\frac{2, 2 - 3\zeta_3}{p} \right) = 1.
\]
Deduce that if \(\alpha, \beta \in O_K \) are congruent to \(\pm 1 \) modulo 3 and prime to each other, and if \((\pi) \) splits completely in \(K/\mathbb{Q}(\zeta_3) \), we have
\[
\left(\frac{\alpha}{\beta} \right) = \left(\frac{\beta}{\alpha} \right).
\]

d) (Optional) If you are ambitious compute the full Hilbert symbol for \(K_p \cong \mathbb{Q}_3(\zeta_3) \) (there are 6 independent entries since it is a symplectic form on a four dimensional space over \(\mathbb{Z}/3 \)). Deduce supplementary laws computing \(\left(\frac{\alpha}{p} \right) \) if \(\alpha \) is a unit or 3-primary under the assumption that \((\pi) \) splits completely in \(K/\mathbb{Q}(\zeta_3) \).

3) Prove Lemma 4.1 from class: If \(X \) is a cohomologically trivial module over a finite group \(\Gamma \) and \(A \) is any (finitely generated) \(\mathbb{Z} \)-free \(\Gamma \)-module then \(\text{Hom}_\mathbb{Z}(A, X) \) is cohomologically trivial.