1. For any real vector bundle E of rank n over a CW complex X, the complexification E_C over X is the complex vector bundle with fibers $(E_C)_x = E_x \otimes \mathbb{C}$ over $x \in X$. Denote by $(E_C)_R$ the underlying real vector bundle of rank $2n$ by forgetting the complex structure. Show that there is an isomorphism:

$$(E_C)_R \cong E \oplus E.$$

2. Let X be a finite CW complex. For any complex vector bundle E over X of rank n, define the determinant bundle $\det(E)$ over X to be the line bundle which is the top-dimensional exterior power $\wedge^n E$ of E. Show that the following bundle isomorphisms exist:

1. $\det(E') \otimes \det(E/E') \cong \det(E)$, for any sub-bundle E' of E;
2. $\det(E^*) \cong \det(E)^*$, where $*$ denotes the dual.

3. Show that the projection $V_n(\mathbb{R}^k) \to G_n(\mathbb{R}^k)$ is a fiber bundle with fiber $O(n)$ by showing that it is the orthonormal n-frame bundle associated to the vector bundle $E_n(\mathbb{R}^k) \to G_n(\mathbb{R}^k)$. [VBKT p. 37, Ex. 1]