Problem 1
The following is a direct generalization of Fatou’s theorem: Show that if \(u(re^{i\theta}) \) is harmonic in the unit disc and bounded there, then \(\lim_{r \to 1} u(re^{i\theta}) \) exists for a.e. \(\theta \).

Problem 2
Show that at almost every point of the boundary unit circle, the function \(\sum_{n=0}^{\infty} z^{2^n} \) fails to have radial limit. This is an example of function that fails to have radial limits almost everywhere.

Problem 3
Suppose \(F \) is holomorphic in the unit disc, and
\[
\sup_{0 \leq r < 1} \frac{1}{2\pi} \int_{-\pi}^{\pi} \log^+ |F(re^{i\theta})| d\theta < \infty,
\]
where \(\log^+ u = \log u \) if \(u \geq 1 \), and \(\log^+ u = 0 \) if \(u < 1 \).
Then \(\lim_{r \to 1} F(re^{i\theta}) \) exists for almost every \(\theta \). The above condition is satisfied whenever
\[
\sup_{0 \leq r < 1} \frac{1}{2\pi} \int_{-\pi}^{\pi} |F(re^{i\theta})|^p d\theta < \infty, \quad \text{for some } p > 0
\]
Functions that satisfy the latter condition are said to belong to the Hardy space \(H^p(D) \).

Problem 4
Let \(F(z) \) be a bounded holomorphic function in the upper half-plane. Show that \(\lim_{y \to 0} F(x + iy) \) exists for a.e. \(x \).

Problem 5
Consider \(F(z) = \frac{1}{z+1}e^z \) in the upper half-plane. Note that \(F(x + iy) \in L^2(\mathbb{R}) \), for each \(y > 0 \) and \(y = 0 \). Observe also that \(F(z) \to 0 \) as \(|z| \to 0 \). However, \(F \notin H^2(\mathbb{R}_+^2) \). Why?

Problem 6
Let \(H \) be the Hilbert transform. Verify that
\begin{enumerate}
 \item \(H^* = -H \), \(H^2 = -I \), and \(H \) is unitary.
\end{enumerate}
(b) If \(\tau_h \) denotes the translation operator, \(\tau_h(f)(x) = f(x - h) \), then \(H \) commutes with \(\tau_h \), \(\tau_h H = H \tau_h \).

(c) If \(\delta_a \) denotes the dilation operator, \(\delta_a(f)(x) = f(ax) \) with \(a > 0 \), then \(H \) commutes with \(\delta_a \), \(\delta_a H = H \delta_a \).

(d) Show that a bounded operator on \(L^2(\mathbb{R}^d) \) commutes with translations if and only if it is a Fourier multiplier operator.

Problem 7

Let \(f \in L^2(\mathbb{R}) \) and let \(u(x, y) \) be the Poisson integral of \(f \), that is \(u = (f * \mathcal{P}_y)(x) \), where \(\mathcal{P}_y \) is the Poisson kernel on the upper half-plane. Let \(v(x, y) = (Hf * \mathcal{P}_y)(x) \), the Poisson integral of the Hilbert transform of \(f \). Prove that:

(a) \(F(x + iy) = u(x, y) + iv(x, y) \) is analytic in the half-plane \(\mathbb{R}_2^+ \), so that \(u \) and \(v \) are conjugate harmonic functions. We also have \(f = \lim_{y \to 0} u(x, y) \) and \(Hf = \lim_{y \to 0} v(x, y) \).

(b) \(F(z) = \frac{1}{\pi i} \int_{\mathbb{R}} f(t) \frac{dt}{t - z} \).

(c) \(v(x, y) = f * Q_y \), where \(Q_y(x) = \frac{1}{\pi} \frac{x}{x^2 + y^2} \) is the conjugate Poisson kernel.

Problem 8

Show that

\[
\left\{ \frac{1}{\sqrt{\pi(i+z)}} \left(\frac{i - z}{i + z} \right)^n \right\}_{n=0}^\infty
\]

is an orthonormal basis of \(H^2(\mathbb{R}_2^+) \).