1. (25 pts) Suppose S is a set of formulas of propositional logic.
 (a) Prove that $\vdash \neg \neg \phi \rightarrow \phi$. (This is 4b from last homework.)
 (b) Prove that if $S \cup \{ \phi \}$ is inconsistent, then $S \vdash \neg \phi$ (that is, there is a
 proof of ϕ from S in our Hilbert-style proof system).
 (c) Prove that if S is inconsistent, then for every ψ, $S \vdash \psi$.

2. (15 pts) Prove that if S is a complete consistent set of formulas of propositional logic in the variables
 $\{p_1, p_2, \ldots\}$, then the following valuation satisfies S: assign True to p_i if the formula p_i is in S, and assign False to p_i if the formula $\neg p_i$ is in S. Show furthermore that this is the only valuation making every formula of S true.

3. (No collaboration) (12 pts) For each sentence in informal english, write a
 formula in first-order logic expressing it.
 (a) Every planar graph has a 4-coloring. (Our universe is the set of
 graphs, $P(x)$ is the relation saying the graph x is planar, and $C_4(x)$
 is the relation saying that x has a 4-coloring)
 (b) Every student without a scholarship pays tuition. (Our universe is
 the set of students, $S(x)$ is the relation saying the student x has
 a scholarship, and $T(x)$ is the relation saying the student x pays
 tuition).
 (c) A student must complete the requirements of their major and all
 their core requirements to graduate. (Our universe is the set of stu-
 dents, $M(x)$ is the relation saying the student x has completed the
 requirements of their major, $C(x)$ is the relation saying the student
 has completed their core requirements, $G(x)$ is the relation saying
 the student has graduated.)
 (d) Everyone has a friend. (Our universe is the set of people. $F(x,y)$ is
 the relation that x is a friend of y.)
 (e) A friend of a friend is a friend. (Our universe is the set of people. $F(x,y)$ is the relation that x is a friend of y.)
 (f) There is someone with at least 3 different friends. (Our universe is
 the set of people. $F(x,y)$ is the relation that x is a friend of y.)

(continued...)
4. (12 pts) For each given formula ϕ of first-order logic, give an example of a structure M in the language consisting of a single binary relation R such that $M \models \phi$, and another structure M' such that $M' \models \neg \phi$.

(a) $\forall x[\exists yR(x, y)]$.
(b) $\forall x[\exists yR(x, y)] \rightarrow \forall x[\forall yR(x, y)]$.
(c) $\forall x[\forall y[R(x, y) \rightarrow \exists zR(x, z) \land R(z, y)]]$.

5. (12 pts) For each pair of formulas, ϕ and ψ, give an example of a structure M such that $M \models \phi$ and $M \models \neg \psi$, where our language has a binary relation R and unary relations S and T.

(a) $\phi = \forall x[\exists yR(x, y)], \psi = \exists y[\forall xR(x, y)]$.
(b) $\phi = \forall x[S(x)] \rightarrow \forall x[T(x)], \psi = \forall x[S(x) \rightarrow T(x)]$.
(c) $\phi = \exists x[S(x)] \land \exists x[T(x)], \psi = \exists x[S(x) \land T(x)]$.