5 Soundness and completeness of our Hilbert-style proof system

Our goal in this section is to prove the soundness and completeness of our Hilbert-style proof system. The easy half of this pair of theorems is soundness.

Theorem 5.1. Suppose $S = \{\phi_1, \phi_2, \ldots\}$ is a set of formulas, and $S \vdash \psi$. Then S implies ψ.

Proof. By induction on the height of proofs. The guts of this proof is just checking that each type of step we use in our proofs is logically valid.

Base case: Proofs of height 0. Such a proof is just a statement of a logical axiom or a formula in S. If ψ is a logical axiom, or $\psi = \phi_i$ for some formula ϕ_i in S, then clearly S implies ψ.

Inductive case: Suppose that proofs of height n are sound, and we have a proof that $S \vdash \psi$ of height $n + 1$, whose last step must be an instance of modus ponens concluding ψ from the formulas θ and $\theta \rightarrow \psi$.

Now since there are proofs of θ and $\theta \rightarrow \psi$ using proofs of height $\leq n$, by our induction hypothesis, S implies θ and S implies $\theta \rightarrow \psi$. But then any valuation making S true makes θ true and $\theta \rightarrow \psi$ true, and hence also makes ψ true. Thus, S implies ψ.

Remark 5.3. It follows from the definition of our proof system that if $S \vdash A \rightarrow B$, then $S \cup \{A\} \vdash B$. So the Deduction Theorem tells us that these two things are equivalent.

Theorem 5.2 (The Deduction Theorem). Suppose that S is a set of formulas and A, B are formulas. If $S \cup \{A\} \vdash B$, then $S \vdash A \rightarrow B$.

Proof. This is an induction on the height of the proof of B. Suppose that $S \cup \{A\} \vdash B$ with a proof of height 1. There are three things that could be happening.
1. B is a logical axiom. In this case $S \vdash B$. Also, since $B \rightarrow (A \rightarrow B)$ is an example of logical axiom 1, $S \vdash B \rightarrow (A \rightarrow B)$. Applying modus ponens, we find that $S \vdash A \rightarrow B$.

2. $B \in S$. Then $S \vdash B$ and the same argument as above works.

3. $B = A$. Then since $S \vdash A \rightarrow A$ by our example from last time, we find that $S \vdash A \rightarrow B$.

Now suppose inductively that B follows from two statements by modus ponens, i.e., there is some formula ψ such that $S \cup \{A\} \vdash \psi$ and $S \cup \{A\} \vdash \psi \rightarrow B$. By our inductive assumption, $S \vdash A \rightarrow \psi$ and $S \vdash A \rightarrow (\psi \rightarrow B)$. Using logical axiom 2, we find that

$$(A \rightarrow (\psi \rightarrow B)) \rightarrow ((A \rightarrow \psi) \rightarrow (A \rightarrow B))$$

is a logical axiom. Applying modus ponens twice, we find that $S \vdash A \rightarrow B$, as desired.

Before we prove the completeness theorem, we need a few more definitions.

Definition 5.4. A set of formulas S in the variables $\{p_1, p_2, \ldots\}$ is complete if for every formula ϕ in the variables $\{p_1, p_2, \ldots\}$, either $\phi \in S$ or $\neg \phi \in S$.

Definition 5.5. A set of formulas S is said to be inconsistent if there is a formula ψ such that $S \vdash \psi$ and $S \vdash \neg \psi$. If S is not inconsistent, then we say S is consistent.

A key fact which will be given as homework is the following:

Exercise 5.6. If $S \cup \{\neg \phi\}$ is inconsistent, then $S \vdash \phi$.

Theorem 5.7. If $S = \{\phi_1, \phi_2, \ldots\}$ is a set of formulas, then if S implies ψ for some formula ψ, then $S \vdash \psi$.

Proof. We prove the contrapositive; if it is not the case that $S \vdash \phi$, then S does not imply ϕ.

Now to show S does not imply ϕ, we must construct a valuation that makes every formula of S true, and ϕ false. We do this as follows.

Let $S_0 = S \cup \{\neg \phi\}$. Now we claim that this set of formulas is consistent. This is because if it were inconsistent, then by Exercise 5.6, $S \vdash \phi$ contradicting our assumption.

Now we make a sequence S_0, S_1, \ldots of consistent sets of formulas such that their union $\overline{S} = \bigcup_i S_i$ is consistent and complete. Let $\theta_1, \theta_2, \ldots$ be a list of all formulas using variables occurring the the formulas of S.

Given S_i, consider $S \cup \{\neg \theta_{i+1}\}$. If this set of formulas is consistent, let $S_{i+1} = S \cup \{\neg \theta_{i+1}\}$. Otherwise, since $S_i \cup \{\neg \theta_{i+1}\}$ is inconsistent, $S_i \vdash \theta_{i+1}$, and hence $S_i \cup \{\theta_{i+1}\}$ is consistent, since any proof $S_i \cup \{\theta_{i+1}\} \vdash \xi$ can be converted into a proof $S_i \vdash \xi$. Hence, we can let $S_{i+1} = S_i \cup \{\theta_{i+1}\}$.
Now by construction, \(\mathcal{S} = \bigcup_i S_i \) is complete. We also have that \(\mathcal{S} \) is consistent, since proofs are finite, and hence any proof from \(\mathcal{S} \) must also be a proof from \(S_n \) for \(n \) large enough.

It will be a homework exercise to finish this proof by constructing a valuation satisfying \(\mathcal{S} \) and hence making every formula of \(S \) true and \(\psi \) false.