
6c Lecture 5: April 14, 2014

We start off by finishing our discussion of Ramsey theory from last time.
We are going to use the infinite Ramsey theorem along with König’s lemma to
prove the finite Ramsey theorem.

Theorem 3.1. Suppose n, k, l ∈ N. Then there is an m ∈ N so that for any
f : [m]k → l, there is an H ⊆ m with |H| = n and H homogeneous for f .

Proof. Suppose not, so for every m there is some f : [m]k → l with no homo-
geneous sets of size n. Notice that this means that every restriction of f to a
smaller domain (for example, to [m′]k where m′ < m) also has no homogeneous
sets of size n. This means that it makes sense to define a tree which has such
functions as elements.

More precisely, the mth level of our tree will contain functions f : [m]k → l
with no homogeneous sets of size n, and it will be ordered by extension. The tree
is finitely branching since there are only finitely many functions f : [m]k → l.
It is infinite by assumption. So by König’s lemma, there is an infinite branch
through the tree. It is easy to use this to define a function g : [N]k → l with no
homogeneous sets H ⊆ N of size n. But this contradicts the infinite Ramsey the-
orem, which tells us there is in fact an infinite set Y ⊆ N which is homogeneous
for g.

4 Proofs by resolution and a Hilbert-style for-
mal proof system

Our next goal is to discuss some formal proof systems. These systems will be
finite sets of simple rules which can be combined to give a a formal proof that S
implies φ for some formula φ and set of formulas S. Here we will write S ` φ to
indicate that there is a formal proof of φ from S (according to whatever proof
system we are discussing).

We’ll be especially interested in verifying two properties of the systems we
will discuss. First, soundness, which is the property that if S ` φ, then S implies
φ (simply stated, our formal proof system doesn’t prove false things). Second,
completeness, which is the property that if S implies φ, then S ` φ (simply
stated, our formal proof system proves every true thing). Together one can
think of soundness and completeness as saying that our proof system is perfect:
it proves every true thing and no false things.

Recall that by compactness, since whenever S implies φ we have that some
finite subset S′ of S implies φ, it’s enough for us to describe proof systems which
only prove logical implications from finite sets of assumptions.

1

Now of course, we already have one way of proving logical implications: truth
tables. However, truth table are very inefficient in practice, and time consuming
both to compute initially and to verify as correct afterwards. Our goal now is to
describe some systems which have the potential for being much more efficient,
and closer to real mathematical practice.

4.1 Efficiently converting logical implications into check-
ing satisfiability of formulas in CNF

We’ll begin by showing that having a system for proving logical implications is
equivalent (in a way that can be computed efficiently) to having a system for
proving when CNF formulas are contradictions. We start with the following
lemma which gets us halfway there.

Lemma 4.1. If S = {φ1, φ2, . . . , φn} is a finite set of formulas, then S implies
ψ iff (φ1∧φ2∧. . .∧φn)→ ψ is a tautology iff φ1∧φ2∧. . . φn∧¬ψ is contradictory.

Proof. Given in class. It follows easily from definitions and DeMorgan’s Laws.

Next, we show that we can assume our formulas which we want to prove
contradictory are in CNF, since there is an efficient algorithm for transforming
any satisfiability problem into an equivalent one for a CNF formula.

Theorem 4.2. There is an efficient (linear-time) algorithm for converting any
formula φ into a formula ψ in CNF which is satisfiable iff φ is.

Proof. As we describe the algorithm in abstract, we will also work an ex-
ample to illustrate the algorithm. Suppose we have a formula such as φ =
¬ ((p ∨ (¬q))↔ (p→ (q ∧ r))). Then consider the parse tree for this formula:

¬ ((p ∨ (¬q))↔ (p→ (q ∧ r)))

¬

(p ∨ (¬q))↔ (p→ (q ∧ r))

p ∨ (¬q) p→ (q ∧ r)

↔

p ¬q

∨

p q ∧ r

→

q

¬

q r

∧

2

For each node having children in this tree starting from the root, we first
associate a new propositional variable v0, v1, . . . , vn. So now we have:

¬ ((p ∨ (¬q))↔ (p→ (q ∧ r))) ≡ v0

¬

(p ∨ (¬q))↔ (p→ (q ∧ r)) ≡ v1

p ∨ (¬q) ≡ v2 p→ (q ∧ r) ≡ v3

↔

p ¬q ≡ v4

∨

p q ∧ r ≡ v5

→

q

¬

q r

∧

Having done this, now each node in the tree is associated a variable (either
it has no children and is associated one of the original variables, or it is has
children and has been assigned one of our new variables). Now for each node
vi having children in the tree, make the formula stating vi is equivalent to the
connective associated to this node applied to its children. In our example, this
gives the formulas v0 ↔ (¬v1), v1 ↔ (v2 ↔ v3), v2 ↔ (p ∨ v4), v3 ↔ (p → v5),
v4 ↔ (¬q), and v5 ↔ (q ∧ r). Now take the conjunction of all these formulas
with the variable assigned to our root v0:

v0 ∧ [v0 ↔ (¬v1)] ∧ [v1 ↔ (v2 ↔ v3)] ∧ [v2 ↔ (p ∨ v4)]∧
[v3 ↔ (p→ v5)] ∧ [v4 ↔ (¬q)] ∧ [v5 ↔ (q ∧ r)]

One can prove by induction on formulas that this process yields a formula
which is satisfiable iff the original formula φ is satisfiable.

To efficiently convert this new formula to conjunctive normal form, it suf-
fices to note that for each of the possible forms of the conjuncts we have in
such a formula (corresponding to each logical connective), there is a short and
equivalent way of expressing the formula in conjunctive normal form:

Original formula Equivalent form
x↔ (¬y) (¬x ∨ ¬y) ∧ (x ∨ y)
x↔ (y ∧ z) (¬x ∨ y) ∧ (¬z ∨ z) ∧ (z ∨ ¬y ∨ ¬z)
x↔ (y ∨ z) (¬x ∨ y ∨ z) ∧ (x ∨ ¬y) ∧ (x ∨ ¬z)
x↔ (y → z) (¬x ∨ ¬y ∨ z) ∧ (x ∨ y) ∧ (x ∨ ¬z)
x↔ (y ↔ z) (¬x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ ¬z) ∧ (x ∨ ¬y ∨ ¬z) ∨ (¬x ∧ ¬y ∧ z)

3

For example, our example φ now yields the following formula ψ:

v0 ∧ [(¬v0 ∨ ¬v1) ∧ (v0 ∨ v1)]∧
[(¬v1 ∨ ¬v2 ∨ v3) ∧ (¬v1 ∨ v2 ∨ ¬v3) ∧ (v1 ∨ ¬v2 ∨ ¬v3) ∨ (¬v1 ∧ ¬v2 ∧ v3)]∧

[(¬v2 ∨ p∨ v4)∧ (v2 ∨¬p)∧ (v2 ∨¬v4)]∧ [(¬v3 ∨¬p∨ v5)∧ (v3 ∨ p)∧ (v3 ∨¬v5)]∧
[(¬v4 ∨ ¬q) ∧ (v4 ∨ q)] ∧ [(¬v5 ∨ q) ∧ (¬r ∨ r) ∧ (r ∨ ¬q ∨ ¬r)]

It will be an exercise to prove that for every formula, the formula ψ obtained
by this algorithm is satisfiable iff φ is satisfiable.

4.2 The method of resolution

Now we will describe a method for proving that a formula in CNF is unsatis-
fiable. Recall that a formula in CNF has the form (`1,1 ∨ . . . , `1,n1

) ∧ (`1,2 ∨
. . . , `1,n2

) ∧ . . . ∧ (`1,k ∨ . . . , `1,nk
), where the `i,j are literals. Since the order

of the literals `i,1 . . . `i,ni
does not matter inside each conjunct, we can think

of them as simply being a set of literals, which we call a clause. It is this ob-
servation which motivates the following definition, which essentially is just new
terminology for parts of a formula in CNF.

Definition 4.3. A clause is a set of literals. A clause is satisfied by a valuation
v if at least one of the literals in the clause is true according to the valuation.
A set of clauses is satisfiable iff there is some valuation making each clause in
the set satisfied.

For example, the CNF formula {(p∨¬q ∨ r)∧ (¬p∨ q ∨ r)∧ (¬p∨¬q ∨¬r)}
is associated to the set of clauses {{p,¬q, r}, {¬p, q, r}, {¬p,¬q,¬r}}, and this
set of clauses is satisfiable iff the original formula is.

Now suppose we have two disjunctions of literals where some propositional
variable p appears in the first, and ¬p appears in the second. For example,
p ∨ q ∨ r and ¬p ∨ q ∨ ¬t. If both these disjunctions are true, then we can
conclude that at least one of the remaining literals other than p and ¬p is true.
This is because if p is false, then q or r is true (to make the first disjunction
true), and if p is true, then q or ¬t is true. Hence, from p∨ q∨ r and ¬p∨ q∨¬t
we can conclude q ∨ r ∨¬t. This idea is what leads us to make the definition of
a resolvent of two clauses.

Definition 4.4. Suppose c1 and c2 are clauses. We say that a third clause c is a
resolvent of c1 and c2 if there is a propositional variable p such that c1 contains
p, c2 contains ¬p, and c = (c1 \ {p}) ∪ (c2 \ {¬p}).

4

