In the following problems, unless otherwise specified, G is a connected compact Lie group, and \int_G is the normalized Haar integral on G.

1. Consider the Lie group $\text{SL}(2, \mathbb{R})$. Show that $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ is contained in the image of the exponential map. Show that, however, the exponential map is not surjective.

2. Show that the center $Z(G)$ of G is the intersection of all maximal tori of G.

3. (a) Let $G = U(n)$. Let $T \subset G$ be the subgroup of diagonal matrices. Show that T is a maximal torus of G. Show that the Weyl group of G is isomorphic to the group of permutations on n letters.

 (b) (Optional) Find a maximal torus for $\text{SO}(n)$ and calculate its Weyl group.

4. Let \mathfrak{g} be a finite dimensional Lie algebra over a field \mathbb{F}. The Killing form on \mathfrak{g} is defined as $B(X, Y) = \text{tr}(\text{ad} X \cdot \text{ad} Y)$.

 (1) If $\mathfrak{g} = \text{Lie } G$ for some Lie group G, show that B is G-invariant.

 (2) If G is a compact Lie group, show that B is negative semi-definite. i.e. $B(X, X) \leq 0$.

 A Lie algebra is called semisimple if B is non-degenerate. A (connected) closed subgroup of $\text{GL}(n, \mathbb{R})$ is called semisimple if its Lie algebra is semisimple.

 (3) Show that the following conditions for a connected compact group are equivalent.

 (i) G is semisimple; (ii) B is negative definite; (iii) $Z(G)$ is finite.

 (4) (Optional) If G is a connected Lie group such that B is negative definite, then G is compact.

5. In this problem, we study some geometry and topology of the (very important) manifold G/T. To study G/T, without loss of generality, we can assume that G is semisimple.

 Let W be the Weyl group of G (w.r.t to T).

 (1) Let $H \subset \mathfrak{t}$ such that $\alpha(H) \neq 0$ for all roots α. Show that the centralizer of H in G (under the adjoint representation) is T. We therefore obtain an embedding $G/T \to \mathfrak{g}$, $gT \mapsto \text{Ad}_g H$.

 (2) We define a smooth function $f : G/T \to \mathbb{R}$ as $f(gT) = B(gH, H)$. Show that $W \simeq N_G(T)/T \subset G/T$ are exactly the points with $df = 0$. (Note that the Killing form B induces a G-equivariant isomorphism $\mathfrak{g} \simeq \mathfrak{g}^*$, and therefore G/T is realized as a coadjoint orbit. In particular, G/T has a symplectic structure. The function f can be considered as a moment map.)

 (3) Given $w \in W$, with a lifting $n_w \in N_G(T)$, show that the Hessian of f at $wT := n_w T$ is non-degenerate. In addition, it has $2\ell(w)$ negative eigenvalues, where $\ell(w)$ is the number of roots α satisfying $\alpha(H) > 0$ but $w(\alpha)(H) < 0$.

 (4) (Optional) Using the Morse theory to conclude that

 $H^i(G/T, \mathbb{C}) \simeq \bigoplus_{w \in W, 2\ell(w) = i} \mathbb{C}$ if even, i odd.

 In particular the Euler number $\chi(G/T) = |W|$.
(5) We construct a (left) action of W of G/T as follows: for $w \in W$, we define $w \cdot gT = gn_w^{-1}T$, where n_w is a lift of w to $N_G(T)$. This action induces a representation of W on $H^*(G/T, \mathbb{C})$. Show that nontrivial elements $w \in W$ do not have fixed point under this action.

(6) Using (4), (5) and the Lefschetz fixed point theorem to conclude that $\text{tr}(w|H^*(G/T, \mathbb{C})) = 0$ if $w \neq 1$. Conclude that $H^*(G/T, \mathbb{C})$ is isomorphic to the regular representation of W.

(7) We construct a map $\theta : t^*_C \simeq \mathbb{X}^*(T) \otimes \mathbb{C} \to H^2(G/T, \mathbb{C})$ as follows. For every $\lambda \in \mathbb{X}^*(T)$, let C_λ denote the corresponding 1-dimensional representation, and let $L_\lambda = G \times^x C_\lambda$ denote the complex line bundle on G/T. Then we define $\theta(\lambda)$ as the first Chern class $c_1(L_\lambda)$ of L_λ. Show that c is W-equivariant, which induces an isomorphism $t^*_C \simeq H^2(G/T, \mathbb{C})$.