1. (5.6.3) Prove directly from the definition that if $X_1, X_2, \cdots \in \{0, 1\}$ are exchangeable, then

$$P(X_1 = 1, X_2 = 1, \cdots, X_k = 1 | S_n = m) = \frac{{n-k \choose n-m}}{{n \choose m}}.$$

2. (6.2.6-ish, 6.5.2) A collection of otherwise indistinguishable black and white balls (b black, w white) are distributed between two urns. Compute the transition probabilities for the following Markov chains, and determine whether they are aperiodic and/or connected, and determine their stationary distributions: (a) At each time step, we pick a ball uniformly at random and move it to the other urn. (b) At each time step, we pick a ball from each urn uniformly at random, and swap. (c) At each time step we pick two distinct balls uniformly at random, and swap them.

3. (6.3.7-ish, 6.3.8) Let X_n be a Markov chain with state space $\{0, 1, \ldots, N\}$ such that X_n is also a martingale, and for any x, there is a positive probability of eventually reaching 0 or N. (a) Show that if we start at x, the probability of eventually reaching N is x/N, and that of eventually reaching 0 is $1 - x/N$. (b) Show that the hypotheses apply to the chain for which at each time step, we generate i.i.d. uniform elements Y_1, \ldots, Y_N of $\{0, 1, \ldots, N - 1\}$, and the new state is the number of these which are less than the current state.

4. (7.1.5-ish) Let $\phi(x) = 1/x - \lfloor 1/x \rfloor$ for $x \in (0, 1)$. (i) Show that ϕ preserves the distribution with density

$$\log 2^{-1} \frac{1}{1+x}.$$

(ii) If $a_0 = \lfloor 1/x \rfloor$, $a_1 = \lfloor 1/\phi(x) \rfloor$, \ldots, then x has the continued fraction expansion $x = 1/(a_0 + 1/(a_1 + 1/\cdots))$. Assuming that ϕ is ergodic, what does this imply about the distribution of coefficients of continued fraction expansions?

5. (7.5.2) Let π_n be a random permutation of $\{1, \ldots, n\}$, and let J^k_n be the number of increasing subsequences of length k of π_n. Compute the expected value of J^k_n, and use this to conclude that $\lim \sup_{n \to \infty} E(\ell(\pi_n)/\sqrt{n}) \leq e$, where $\ell(\pi_n)$ is the length of the longest increasing subsequence of π_n.
