Math 120b: Homework Set 1
Due: Monday January 12 at 5PM
(All exercises are from Lang’s Algebra)

(1) Let \(k \subset E \subset K \) be fields. Show that
\[
\text{tr.deg.}(K/k) = \text{tr.deg.}(K/E) + \text{tr.deg.}(E/k).
\]
If \(\{x_i\} \) is a transcendence base of \(E/k \) and \(\{y_j\} \) is a transcendence base of \(K/E \) then \(\{x_i, y_j\} \) is a transcendence base of \(K/k \).

(2) Let \(E = \mathbb{Q}(\alpha) \), where \(\alpha \) is a root of the equation \(\alpha^3 + \alpha^2 + \alpha + 2 = 0 \).
Express \((\alpha^2 + \alpha + 1)(\alpha^2 + \alpha) \) and \((\alpha - 1)^{-1} \) in the form \(a\alpha^2 + b\alpha + c \) with \(a, b, c \in \mathbb{Q} \).

(3) Show that \(\sqrt{2} + \sqrt{3} \) is algebraic over \(\mathbb{Q} \) of degree 4.

(4) Let \(\alpha \) be a real number with \(\alpha^4 = 5 \).
(a) Show that \(\mathbb{Q}(i\alpha^2) \) is normal over \(\mathbb{Q} \).
(b) Show that \(\mathbb{Q}(\alpha + i\alpha) \) is normal over \(\mathbb{Q}(i\alpha^2) \).
(c) Show that \(\mathbb{Q}(\alpha + i\alpha) \) is not normal over \(\mathbb{Q} \).

(5) Let \(K \) be a finite field with \(p^n \) elements. Show that every element of \(K \) has a unique \(p \)th root in \(K \).

(6) Let \(E = F(x) \) where \(x \) is transcendental over \(F \).
(a) Let \(K \neq F \) be a subfield of \(E \) which contains \(F \). Show (directly) that \(x \) is algebraic over \(K \).
(b) Let \(y = \frac{f(x)}{g(x)} \) be a rational function, with relatively prime polynomials \(f, g \) in \(F[x] \). Let \(n = \max(\deg(f), \deg(g)) \). Suppose \(n \geq 1 \). Prove that \([F(x) : F(y)] = n \).

(7) Let \(k \) be a field of characteristic \(p \) and let \(t, u \) be algebraically independent over \(k \). Show that:
(a) \(k(t, u) \) has degree \(p^2 \) over \(k(t^p, u^p) \).
(b) There exist infinitely many extensions between \(k(t, u) \) and \(k(t^p, u^p) \).