Crossing Numbers

- Given a graph $G = (V, E)$, the **crossing number** of G, denoted $\text{cr}(G)$ is the minimum number of crossings that a planar drawing of G can have.
- What are the graphs that have a crossing number of zero? **The planar graphs**.
- What is the crossing number of K_5? 1.
The Crossing Number of K_6

- **Problem.** Find the crossing number of K_6.
- **Solution.**
 - Recall that any planar graph with n vertices has at most $3n - 6$ edges.
 - That is, any planar subgraph of K_6 has at most 12 edges.

![Diagram](image)

Solution (cont.)

- We can draw at most 12 edges of K_6 without a crossing.
 - K_6 has 15 edges, and adding each of the three remaining edges yields at least one crossing.
 - So $cr(K_6) \geq 3$.
 - The following figure shows that $cr(K_6) = 3$.

![Diagram](image)
A First Bound

Claim. For any graph $G = (V, E)$, we have $cr(G) \geq |E| - (3|V| - 6)$.

Proof.
- Consider a drawing of G that minimizes the number of crossings.
- We first draw a maximum plane subgraph that is contained in this drawing. This subgraph has at most $3|V| - 6$ edges.
- Adding every additional edge increases the number of crossings by at least one. There are at least $|E| - (3|V| - 6)$ such edges.

Is This a Good Bound?

For simple graphs, the bound

$$cr(G) \geq |E| - 3|V| + 6$$

is never larger than $|V|^2/2$.
- Is this close to the maximum number of crossings that is possible?
- To find the maximum possible number of crossings, we consider $cr(K_n)$. The above bound implies

$$cr(K_n) \geq \frac{n(n - 1)}{2} - 3n + 6 \approx \frac{n^2}{2}.$$
Estimating $cr(K_n)$

- **Theorem.** For sufficiently large n, we have
 \[
 \frac{n^4}{120} - cn^3 \leq cr(K_n) \leq \frac{n^4}{24} + cn^3,
 \]
 for some constant c.

- **Upper bound**
 - **Trivial!**
 - Every crossing is the intersection of two edges, which are defined by four vertices.
 - The number of ways to choose four vertices is
 \[
 \binom{n}{4} \approx \frac{n^4}{24}.
 \]
Lower Bound

- Consider a drawing of K_n that minimizes the number of crossings.
 - Removing any one vertex results in a drawing of K_{n-1}. This drawing has at least $cr(K_{n-1})$ crossings.
 - We have n different drawings of K_{n-1}, and together they contain at least $n \cdot cr(K_{n-1})$ crossings.
 - Each crossing is counted exactly $n - 4$ times. Thus, we have
 \[
 (n - 4) \cdot cr(K_n) \geq n \cdot cr(K_{n-1}).
 \]

Lower Bound (cont.)

- We prove by **induction on** n that $cr(K_n) \geq \frac{1}{5} \binom{n}{4}$.
 - **Induction basis.** For $n = 5$, we know that
 \[
 cr(K_5) = 1 = \frac{1}{5} \binom{5}{4}.
 \]
 - **Induction step.** By the previous slide
 \[
 cr(K_n) \geq \frac{n}{n - 4} cr(K_{n-1}) \geq \frac{n}{n - 4} \cdot \frac{1}{5} \binom{n - 1}{4} \geq \frac{n}{n - 4} \cdot \frac{1}{5} \cdot \frac{(n - 1)(n - 2)(n - 3)(n - 4)}{4!}
 \]
 \[
 = \frac{n}{n - 4} \cdot \frac{1}{5} \cdot \frac{n - 1}{(n - 3)(n - 2)(n - 4)}
 \]
 \[
 = \frac{1}{5} \binom{n}{4}.
 \]
The Correct Bound

- Somewhat more involved arguments lead to \(cr(K_n) \approx \frac{n^4}{64} \).
- It is conjectured that
 \[
 cr(K_{m,n}) = \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{m}{2} \right\rfloor \left\lfloor \frac{m-1}{2} \right\rfloor ,
 \]
 but the problem remains open.
 - This is known as the brick factory problem, since it was asked by Turán while doing forced labor in a brick factory during World War II.

So How Bad is Our Bound?

- We have the bound
 \[cr(G) \geq |E| - 3|V| + 6. \]
- This implies that \(cr(K_n) \geq \frac{n^2}{2} \).
- We have \(cr(K_n) \approx \frac{n^4}{64} \).
- For large \(n \) the bound is significantly smaller than the actual value.
An Improved Bound

Theorem. Let $G = (V, E)$ be a graph with $|E| \geq 4|V|$. Then
\[
\text{cr}(G) \geq \frac{|E|^3}{64|V|^2}.
\]

- We consider a drawing of G with a minimum number of crossings c. Set $p = \frac{4|V|}{|E|}$.
- $S \subset V$ – the subset obtained by independently choosing each vertex of V with probability p.
- c_S – the number of crossings that remain in the drawing of G after removing $V \setminus S$.
- $G_S = (S, E_S)$ – the subgraph induced on S.
- $\mathbb{E}[|S|] = p|V|$. \(\mathbb{E}[|E_S|] = p^2|E| \).
- $\mathbb{E}[c_S] = p^4c$.

By linearity of expectation
\[
\mathbb{E}[c_S - |E_S| + 3|S|] = p^4c - p^2|E| + 3p|V|
\]
\[
= \frac{4^4|V|^4c}{|E|^4} - \frac{16|V|^2}{|E|} + \frac{12|V|^2}{|E|}.
\]
\(G_S = (S, E_S) \) – the subgraph induced on \(S \).

\(c_S \) – the number of crossings that remain in the drawing of \(G \) after removing \(V \setminus S \).

\[
E[c_S - |E_S| + 3|S|] = \frac{4^4|V|^4c}{|E|^4} - \frac{4|V|^2}{|E|}.
\]

Thus, there exists a set \(S \) with

\[
c_S - |E_S| + 3|S| \leq \frac{4^4|V|^4c}{|E|^4} - \frac{4|V|^2}{|E|}.
\]

By the weak bound, \(c_S \geq |E_S| - 3|S| + 6 \).

Thus, \(\frac{4^4|V|^4c}{|E|^4} \geq \frac{4|V|^2}{|E|} + 6 > \frac{4|V|^2}{|E|} \). That is,

\[
c > \frac{|E|^3}{64|V|^2}.
\]

A Minor Detail

Where in the proof did we use the restriction \(|E| \geq 4|V| \)?

- The probability for choosing a vertex is \(p = \frac{4|V|}{|E|} \). If \(|E| < 4|V| \), this is not well defined.
Is This Bound Better?

- We have \(cr(G) \geq \frac{|E|^3}{64|V|^2} \).
 - That is \(cr(K_n) \geq \frac{\left(\frac{n^2}{2}\right)^3}{64n^2} = \frac{n^4}{2^9} \).
 - Recall that \(cr(K_n) \approx \frac{n^4}{64} \).
 - Even though there is a gap in the constants, the dependency on \(n \) is correct.

Point-Line Incidences

- \(L \) – a set of \(n \) lines.
- \(P \) – a set of \(m \) points.
- An incidence: \((p, \ell) \in P \times L \) so that \(p \in \ell \).
Lower Bound

- **Erdős.** By taking a $\sqrt{m} \times \sqrt{m}$ integer lattice and the n lines that contain the largest number of points, we have $c(m^{2/3}n^{2/3} + m + n)$ incidences.

The Szemerédi–Trotter Theorem

- **Theorem.** The number of incidences between any set P of m points and any set L of n lines is at most $c(m^{2/3}n^{2/3} + m + n)$.
• I – the number of incidences.

• We build a graph.
 ◦ A vertex for every point.
 ◦ An edge between two vertices if they are consecutive on a line.

• A line that is incident to k points yields $k - 1$ edges. Thus, the number of edges is $I - n$.
 ◦ By the crossing lemma, the number of crossings in the graph is at least \(\frac{(I-n)^3}{64m^2} \).
 ◦ Since every two lines intersect at most once, the number of crossings is less than \(\frac{n^2}{2} \).

\[
\frac{(I-n)^3}{64m^2} < \frac{n^2}{2} \quad \rightarrow \quad I < 32^{\frac{3}{2}m^{\frac{3}{2}n^{\frac{3}{2}}}} + n
\]

A Minor Issue

• The lower bound on the number of crossings applies only when \(|E| \geq 4|V| \).
 ◦ Since \(|E| = I - n \), if \(|E| < 4|V| \) then
 \(I < n + 4m \).
The Unit Distances Problem

- **Problem (Erdős `46).** How many pairs of points in a set of \(n \) points could be at unit distance from each other?
 - By taking \(n \) points evenly spaced on a line, we have \(n - 1 \) unit distances.

Early Results

- **Erdős** showed that a \(\sqrt{n} \times \sqrt{n} \) square lattice with the right distances determines \(n^{1+c/\log \log n} \) unit distances, for some constant \(c \).
- Erdős also proved that any set of \(n \) points determines at most \(cn^{3/2} \) unit distances.
An Improved Result

- Although in the past 70 years MANY top combinatorists worked on the problem, only one work managed to improve the bound (Spencer, Szemerédi, and Trotter 1984).

- **Theorem.** Every set of \(n \) points determines at most \(cn^{4/3} \) unit distances.

Incidences with Circles

- Given a set of circles and a set of points, an incidence is a pair \((p, C)\) where \(p \) is a point, \(C \) is a circle, and \(p \) is contained in \(C \).

- **11** incidences are in the figure.
Unit Distances and Unit Circles

- We place a unit circle around every point.
- The number of point-circle incidences is twice the number of unit distances.
- Thus, it suffices to find an upper bound for the number of incidences between n points and any n unit circles.

Incidence Bound

- **Theorem.** There are at most $cn^{4/3}$ incidences between any set P of n points and any set C of n unit circles.
Building a Graph

- We build a graph.
 - A vertex for every point.
 - An edge between two points if they are consecutive along at least one circle.
 - A circle that is incident to k points yields at least $k - 1$ edges.
 - An edge can originate from at most two circles.

Double Counting Crossings

- I – the number of point-circle incidences.
- We have a graph with n vertices and at least $(I - n)/2$ edges.
- The number of crossings in the graph at least
 \[
 \frac{|E|^3}{64|V|^2} \geq \frac{(I - n)^3}{2^9 n^2}.
 \]
- Since any two circles intersect at most twice, the number of crossings is at most n^2.
- Combining the two implies $n^2 \geq \frac{(I - n)^3}{2^9 n^2}$. That is $(I - n)^3 \leq 2^9 n^4$ or $I \leq 2^3 n^3 + n$.
The End

Crossings will appear in the next Piled Higher and Deeper movie!

“Girl, that — is so non-planar you can call it K_5”