Basic Probability

- A discrete probability space is a finite set Ω. Each $\omega \in \Omega$ is called an elementary event, and has a certain probability $\Pr[\omega] \in [0, 1]$, such that $\sum_{\omega \in \Omega} \Pr[\omega] = 1$.
- Any subset $A \subseteq \Omega$ is an event, of probability $\Pr[A] = \sum_{\omega \in A} \Pr[\omega]$.
- A union of events corresponds to OR and an intersection of events corresponds to AND.
Independent Events

- Two events $A, B \subseteq \Omega$ are independent if $\Pr[A \cap B] = \Pr[a] \cdot \Pr[b]$.

- Example. We flip two fair coins.
 - Let $\omega_{i,j}$ be the elementary event that coin A landed on i and coin B on j, where $i, j \in \{h, t\}$. Each of the four events has a probability of 0.25.
 - The event where coin A lands on heads is $a = \{\omega_{h,t}, \omega_{h,h}\}$. For B it is $b = \{\omega_{t,h}, \omega_{h,h}\}$.
 - The events are independent since $\Pr[a \text{ and } b] = \Pr[\omega_{h,h}] = 0.25 = \Pr[a] \cdot \Pr[b]$.

(Discrete) Uniform Distribution

- In a uniform distribution we have a set Ω of elementary events, each occurring with probability $\frac{1}{|\Omega|}$.
 - For example, when flipping a fair die, we have a uniform distribution over the six possible results.
Union Bound

- For any two events A, B, we have
 \[\Pr[A \cup B] = \Pr[A] + \Pr[B] - \Pr[A \cap B]. \]

- This immediately implies that
 \[\Pr[A \cup B] \leq \Pr[A] + \Pr[B], \]
 where equality holds iff A, B are disjoint.

- **Union bound.** For any finite set of events A_1, \ldots, A_k, we have
 \[\Pr[\bigcup_i A_i] \leq \sum_i \Pr[A_i]. \]

Recall: Ramsey Numbers

- $R(p, p)$ is the smallest number n such that each blue-red edge coloring of K_n contains a monochromatic K_p.

- **Theorem.** $R(p, p) > 2^{p/2}$.
 - In the previous class we provided one proof for this.
 - Now we provide another proof, using probability.
Probabilistic Proof

- For some \(n \), we color the edges of \(K_n \).
 - Each edge is independently and uniformly colored either blue or red.
 - For any fixed set \(S_\alpha \) of \(p \) vertices, the probability that it forms a monochromatic \(K_p \) is \(2^{1-\binom{p}{2}} \).
 - There are \(\binom{n}{p} \) possible sets of \(p \) vertices. By the union bound, the probability that there is a monochromatic \(K_p \) is at most
 \[
 \sum_{\alpha} 2^{1-\binom{p}{2}} = \binom{n}{p} 2^{1-\binom{p}{2}}.
 \]

Proof (cont.)

- For some \(n \), we color the edges of \(K_n \).
 - Each edge is colored blue with probability of 0.5, and otherwise red.
 - The probability for a monochromatic \(K_p \) is
 \[
 \leq \sum_{\alpha} 2^{1-\binom{p}{2}} = \binom{n}{p} 2^{1-\binom{p}{2}}.
 \]
 - If \(n \leq 2^{p/2} \), this probability is smaller than 1.
 - In this case, the probability that we do not have any monochromatic \(K_p \) is positive, so there exists a coloring of \(K_n \) with no such \(K_p \).
Non-Constructive Proofs

- We proved that there exists a coloring of K_n with no monochromatic K_p, but we have no idea how to find this coloring.
- Such a proof is called non-constructive.
- The probabilistic method often proves the existence of objects with surprising properties, but we still have no idea how they look like.

A Tournament

- We have n people competing in thumb wrestling.
 - Every pair of contestants compete once.
 - How can we decide who the overall winner is?
- We build a directed graph:
 - A vertex for every team.
 - An edge between every two vertices, directed from the winner to the loser.
 - An orientation of K_n is called a tournament.
The King of the Tournament

• The winner can be the vertex with the maximum outdegree (the contestant winning the largest number of matches), but it might not be unique.
• A king is a contestant x such that for every other contestant y either $x \rightarrow y$ or there exists z such that $x \rightarrow z \rightarrow y$.
• Theorem. Every tournament has a king.

Proof

• $D^+(v)$ – the number of vertices reachable from v by a path of length ≤ 2.
• Let v be a vertex that maximizes $D^+(v)$.
 ◦ Assume, for contradiction, that v is not a king.
 ◦ Then there exists u such that $u \rightarrow v$ and there is no path of length two from v to u.
 ◦ That is, for every w such that $v \rightarrow w$, we also have $u \rightarrow w$.
 ◦ But this implies that $D^+(u) \geq D^+(v) + 1$, contradicting the maximality of v!
The S_k Property

- We say that a tournament T has the S_k property if for every subset S of k participants, there exists a participant that won against everyone in S.
 - Formally, this is an orientation of K_n, such that for every subset S of k vertices there exists a vertex v with an edge from v to every vertex of S.

- Example. A tournament with the S_1 property.

Tournaments with the S_k Property

- Theorem. If $\binom{n}{k} \left(1 - 2^{-k}\right)^{n-k} < 1$ then there is a tournament on n vertices with the S_k property.

- Proof.
 - For some n satisfying the above, we randomly orient $K_n = (V, E)$, such that the orientation of every $e \in E$ is chosen uniformly.
 - Consider a subset $S \subset V$ of k vertices. The probability that a given vertex $v \in V \setminus S$ does not beat all of S is $1 - 2^{-k}$.
Proof (cont.)

- Consider a subset $S \subset V$ of k vertices. The probability that a specific vertex $v \in V \setminus S$ does not beat every vertex of S is $1 - 2^{-k}$.

- A_S – the event of S not being beat by any vertex of $V \setminus S$.

- We have $\Pr[A_S] = (1 - 2^{-k})^{n-k}$, since we ask for $n - k$ independent events to hold.

- By the union bound, we have

$$\Pr \left[\bigvee_{S \subset V \atop |S|=k} A_S \right] \leq \sum_{S \subset V \atop |S|=k} \Pr[A_S] = \binom{n}{k} (1 - 2^{-k})^{n-k} < 1.$$

Completing the Proof

- A_S – the event of S not being beat by any vertex of $V \setminus S$.

- we have

$$\Pr \left[\bigvee_{S \subset V \atop |S|=k} A_S \right] < 1.$$

- That is, there is a positive probability that every subset $S \subset V$ of size k is beat by some vertex of $V \setminus S$. So such a tournament exists.
Which NBA Player is Related to Mathematics?

Michael Jordan Shaquille O'Neal LeBron James

Intersecting Sets

• Given two subsets $A, B \subset \{0,1,2, \ldots, n-1\}$, we say that A and B intersect if $A \cap B \neq \emptyset$.

• **Question.** Consider a set S of subsets of k elements of $\{0,1,2, \ldots, n-1\}$, such that every two subsets of S intersect.

• How large can $|S|$ be?
 - If $k > \frac{n}{2}$ then S can contain all $\binom{n}{k}$ subsets of k elements.
 - Thus, we assume that $k \leq n/2$.

Large Intersecting Families

- We can take all of the k-element subsets of $\{0,1,2,\ldots,n-1\}$ that contain 1.
 - Each pair of such subsets intersect.
 - The number of such subsets is $\binom{n-1}{k-1}$.
- In the special case of $n = 2k$, we can take all of the subset that do not contain 1.
 - Example. For $k = 2$ and $n = 4$, we take \{2,3\}, \{0,3\}, \{0,2\}.
 - Each two such subsets intersect.
 - The number of such subsets is $\binom{n-1}{k-1}$.

Erdős–Ko–Rado Theorem

- For any $k \leq \frac{n}{2}$, we know that there exists a set of $\binom{n-1}{k-1}$ intersecting subsets of size k.
 - Can we obtain a larger intersecting family of such subsets?
- Theorem. For $n \geq 2k$, every family F of intersecting k-element subsets of $\{0,1,2,\ldots,n-1\}$, we have $|F| \leq \binom{n-1}{k-1}$.
A Quick Lemma

- **Lemma.** For $0 \leq s \leq n - 1$ set $A_s = \{s, s + 1, \ldots, s + k - 1\}$ with addition $mod\ n$. Then an intersecting family F can contain at most k of the A_s’s.

- **Proof.** Fix some $A_s \in F$.
 - The subsets that intersect it are $A_{s-k+1}, A_{s-k+2}, \ldots, A_{s+k-2}, A_{s+k-1}$.
 - We arrange these subsets into $k - 1$ pairs $\{A_{s-k+i}, A_{s+i}\}$.
 - The two subsets in each pair are disjoint, so F contains at most one of them.

Proving the Theorem

- Consider an intersecting family F.
 - We **uniformly and independently** choose a permutation σ of $\{0, 1, \ldots, n - 1\}$ and a number $i \in \{0, 1, \ldots, n - 1\}$.
 - Let $A_i = \{\sigma(i), \sigma(i + 1), \ldots, \sigma(i + k - 1)\}$ (as before, under addition $mod\ n$).
 - By applying the lemma from the previous slide with respect to the new ordering defined by the permutation, we have

$$Pr[A_i \in F] \leq \frac{k}{n}.$$
Consider an intersecting family F.

- We uniformly and independently choose a permutation σ of $\{0,1, ..., n-1\}$ and a number $i \in \{0,1, ..., n-1\}$.
- For $A_i = \{\sigma(i), \sigma(i+1), ..., \sigma(i+k-1)\}$, we have $\Pr[A_i \in F] \leq \frac{k}{n}$.
- On the other hand, since A_i is chosen uniformly out of the $\binom{n}{k}$ possible subsets, we have $\Pr[A_i \in F] = \frac{|F|}{\binom{n}{k}}$.

Combining the two bounds implies

$$|F| \leq \frac{k}{n} \binom{n}{k} = \binom{n-1}{k-1}.$$

Random Variables

- A random variable is a function from the set of possible events to \mathbb{R}.

Example. Say that we flip five coins.

- We can define the random variable X to be the number of coins that landed on heads.
- We can define the random variable Y to be the percentage of heads in the tosses.
- Notice that $Y = 20X$.
Indicator Random Variables

- An *indicator random variable* is a random variable X that is either 0 or 1, according to whether some event happens or not.

Example. We toss a fair die.

- We can define the six indicator variable X_1, \ldots, X_6 such that $X_i = 1$ iff the result of the roll is i.

Expectation

- The *expectation* of a random variable X is

$$E[X] = \sum_{\omega \in \Omega} X(\omega) \Pr[\omega].$$

- Intuitively, $E[X]$ is the expected value of X in the long-run average value of repetitions of the experiment it represents.
Expectation Example

- We roll a fair six-sided die.
 - Let X be a random variable that represents the outcome of the roll.

 $$E[X] = \sum_{\omega \in \Omega} X(\omega) \Pr[\omega] = \sum_{i \in \{1,\ldots,6\}} i \cdot \frac{1}{6} = 3.5$$

While a prisoner of war during World War II, J. Kerrich conducted an experiment in which he flipped a coin 10,000 times and kept a record of the outcomes. A portion of the results is given in the table below.

<table>
<thead>
<tr>
<th>Number of Tosses</th>
<th>Number of Heads</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>100</td>
<td>44</td>
</tr>
<tr>
<td>500</td>
<td>255</td>
</tr>
<tr>
<td>1,000</td>
<td>502</td>
</tr>
<tr>
<td>5,000</td>
<td>2,533</td>
</tr>
<tr>
<td>10,000</td>
<td>5,067</td>
</tr>
</tbody>
</table>
Linearity of Expectation

- If X is a random variable, then $5X$ is a random variable with a value five times that of X.
- **Lemma.** Let $X_1, X_2, ..., X_k$ be a collection set of random variables over the same discrete probability. Let $c_1, ..., c_k$ be constants. Then

$$E[c_1X_1 + c_2X_2 + \cdots + c_kX_k] = \sum_{i=1}^{k} c_i E[X_i].$$

Fixed Elements in Permutations

- Let σ be a uniformly chosen permutation of $\{1, 2, ..., n\}$.
 - For $1 \leq i \leq n$, let X_i be an **indicator variable** that is 1 if i is fixed by σ.
 - $E[X_i] = \Pr[\sigma(i) = i] = \frac{(n-1)!}{n!} = \frac{1}{n}$.
 - Let X be the number of fixed elements in σ.
 - We have $X = X_1 + \cdots + X_n$.
 - **By linearity of expectation**
 $$E[X] = \sum_{i} E[X_i] = n \cdot \frac{1}{n} = 1.$$
Hamiltonian Paths

- Given a directed graph $G = (V, E)$, a Hamiltonian path is a path that visits every vertex of V exactly once.
 - Major problem in theoretical computer science: Does there exist a polynomial-time algorithm for finding whether a Hamiltonian path exists in a given graph.

Hamiltonian Paths in Tournaments

- Theorem. There exists a tournament T with n players that contains at least $n! 2^{-n+1}$ Hamiltonian paths.
Proof

- We **uniformly** choose an orientation of the edges of K_n to obtain a tournament T.
 - There is a **bijection** between the possible Hamiltonian paths and the permutations of $\{1, 2, \ldots, n\}$. Every possible path defines a unique permutation, according to the order in which it visits the vertices.
 - For a permutation σ, let X_σ be an **indicator variable** that is 1 if the path corresponding to σ exists in T.
 - We have $E[X_\sigma] = \Pr[X_\sigma = 1] = 2^{-n+1}$.

- We **uniformly** choose an orientation of the edges of K_n to obtain a tournament T.
 - For a permutation σ, let X_σ be an **indicator variable** that is 1 if the path corresponding to σ exists T.
 - We have $E[X_\sigma] = \Pr[X_\sigma = 1] = 2^{-n+1}$.
 - Let X be a random variable of the number of Hamiltonian paths in T. Then $X = \sum_\sigma X_\sigma$.

 $E[X] = \sum_\sigma E[X_\sigma] = n! \cdot 2^{-n+1}$.
 - Since this is the expected number of paths in a uniformly chosen tournament, there must is a orientation with at least as many paths.
The End: Michael Jordan

- **Math major** in college.
 - In his junior year he switched to cultural geography (whatever that means...).