Reminder: Spanning Trees

- A **spanning tree** is a tree that contains all of the vertices of the graph.
- A graph can contain many distinct spanning trees.
Counting Spanning Trees

- In this class we focus on counting how many spanning trees a graph has.
 - We begin with graphs that we know well:

\[C_n \quad \text{and} \quad K_n \]

A First Estimate

- **Claim.** \(K_n \) contains at least \((n - 1)! \) spanning trees.
 - Denote the vertices of \(K_n \) as \(\{v_1, v_2, \ldots, v_n\} \).
 - We start with the edge \((v_1, v_2) \).
 - For \(3 \leq i \leq n \), we connect \(v_i \) to a vertex of \(\{v_1, \ldots, v_{i-1}\} \).
Completing the Solution

- Denote the vertices of K_n as $\{v_1, v_2, ..., v_n\}$.
- We start with the edge (v_1, v_2).
- For $3 \leq i \leq n$, we connect v_i to a vertex of $\{v_1, ..., v_{i-1}\}$.
- There are $(n - 1)!$ Distinct spanning trees that can be obtained in this way.

Cayley’s Formula

- **Theorem.** K_n contains exactly n^{n-2} spanning trees.
 - There are n^{n-2} sequences of length $n - 2$ where each entry is a number of $\{1, 2, ..., n\}$.
 - To prove the theorem, we describe a bijection between the set of these sequences and the spanning trees of K_n.

![Diagram of vertex connections](image)
Prüfer Code

- v_1, v_2, \ldots, v_n – the vertices of K_n.
- T – a spanning tree in K_n.
- Repeat the following until two vertices remain.
 - Remove the leaf v_i with the smallest index.
 - Write down the remaining neighbor of v_i in the tree.

Examples for Small Values of n
From a Map to a Bijection

- We have a map from the spanning trees of K_n to the set of sequences.
- To show that this map is a bijection, we show that it has an inverse.
 - We show that given a sequence, we can recover the spanning tree leading to it.
 - We begin with a graph with n isolated vertices, and add edges according to the sequence.

Recovering the First Edge

- Say that the first number in our sequence is 5. Then the first edge that was removed from the tree had v_5 as an endpoint.
 - How can we find the other endpoint?
 - It is the leaf with the smallest index. But how can we tell whether v_1 is a leaf of the tree?
 - v_1 is a leaf if and only if it does not appear in the sequence.
Examples

\[7, 4, 4, 7, 5 \], so 1 is a leaf

\[1, 2, 1, 3, 3, 5 \], so 1 is not a leaf

Example

- We have 7 vertices and the code \(7, 4, 4, 7, 5 \).
 - The first edge is connected to \(v_7 \). Since 1 does not appear in the sequence, we know that \(v_1 \) is a leaf of the tree, so this edge is \((v_1, v_7)\).
Recovering the Entire Tree

- We start with a graph with no edges, where every vertex is unmarked, and repeat:
 - Consider the next number a_i in the sequence and connect vertex v_{a_i} to vertex v_j with the smallest index, out of the unmarked vertices that do not appear in the remaining part of the sequence.
 - We then mark v_j.
 - v_j must be a leaf in the tree that is obtained by removing the edges that were previously discovered.

Example (cont.)

- We have 7 vertices and the code $7, 4, 4, 7, 5$.
Example (cont.)

We have 7 vertices and the code \(7, 4, 4, 7, 5\).

\[\begin{array}{cccc}
 v_7 & v_1 & v_6 & v_5 \\
 v_4 & v_3 & v_2 & v_6 \\
 v_5 & v_4 & v_3 & v_2 \\
 v_4 & v_3 & v_2 & v_6 \\
 v_5 & v_4 & v_3 & v_2 \\
\end{array}\]
The Final Step

- The sequence contains only \(n - 2 \) numbers, so there is still one edge missing in the tree.
- The final edge must be between the two remaining unmarked vertices.
- \(7, 4, 4, 7, 5 \):

Concluding the Proof

- We described a map from the set of spanning trees of \(K_n \) to the set of sequences.
- We proved that this map is a bijection, since it has an inverse.
- Thus, the number of spanning trees of \(K_n \) equals the number of sequences, which is \(n^{n-2} \).
Which Famous Serial Killer is Related to Mathematics

Charles Manson The Unabomber Ted Bundy

Spanning Trees in a General Graph

- Given a graph $G = (V, E)$, we denote by $\tau(G)$ the number spanning trees of G.
Recall: Adjacency Matrix

- Consider a graph $G = (V, E)$.
 - We order the vertices as $V = \{v_1, v_2, \ldots, v_n\}$.
 - The adjacency matrix of G is a symmetric $n \times n$ matrix A. The cell A_{ij} contains the number of edges between v_i and v_j.

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 3 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 3 & 0 & 1 & 0 \end{pmatrix}$$

Matrix Tree Theorem

- **Theorem.** Let $G = (V, E)$ be a loopless graph, such that $V = \{v_1, \ldots, v_n\}$.
 - Let A be the adjacency matrix of G.
 - Let D be the diagonal matrix with $D_{ii} = \text{deg} v_i$.
 - Let $M = D - A$.
 - For any $1 \leq j \leq n$, removing the j’th row and column from M and taking the determinant of the resulting matrix gives $\tau(G)$.
Example

\[D = \begin{pmatrix}
3 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{pmatrix} \quad A = \begin{pmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{pmatrix} \]

\[M = D - A = \begin{pmatrix}
3 & -1 & -1 & -1 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 2 & 0 \\
-1 & -1 & 0 & 2
\end{pmatrix} \]

\[\begin{vmatrix}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 2
\end{vmatrix} = 8 \]

Reminder: Incidence Matrix of a Directed Graph

- Consider a directed graph \(G = (V, E) \).
 - We order the vertices as \(V = \{v_1, v_2, ..., v_n\} \) and the edges as \(E = \{e_1, e_2, ..., e_m\} \).
 - The incidence matrix of \(G \) is an \(n \times m \) matrix \(M \). The cell \(M_{ij} \) contains -1 if \(e_j \) is entering \(v_i \), and 1 if \(e_j \) is leaving \(v_i \).
Using the Incidence Matrix

- We arbitrarily direct every edge of G. Let I denote the incidence matrix of the resulting graph.
 - Then $M = I \cdot I^T$.

$$I = \begin{pmatrix} -1 & 0 & 1 & 1 & 0 \\ 0 & 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & -1 \end{pmatrix}$$

$$M = \begin{pmatrix} 3 & -1 & -1 & -1 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 2 & 0 \\ -1 & -1 & 0 & 2 \end{pmatrix}$$

Removing a Row and a Column

- After directing G, we have $M = I \cdot I^T$.
 - Let M_j denote the matrix obtained by removing the j'th row and column from M.
 - Let I_j denote the matrix obtained by removing the j'th row from I. Then $M_j = I_j I_j^T$.

$$I = \begin{pmatrix} -1 & 0 & 1 & 1 & 0 \\ 0 & 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & -1 \end{pmatrix}$$

$$M = \begin{pmatrix} 3 & -1 & -1 & -1 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 2 & 0 \\ -1 & -1 & 0 & 2 \end{pmatrix}$$
The Cauchy–Binet Formula

For \(m \geq n \), let \(A \) be an \(n \times m \) matrix and let \(B \) be an \(m \times n \) matrix.

- Let \(S_{m,n} \) denote the set of \(n \)-element subsets of \(\{1,2, ..., m\} \).
- For \(s \in S_{m,n} \), let \(A_s \) denote the \(n \times n \) submatrix containing the columns with indices in \(s \).
- Similarly, let \(B_s \) denote the \(n \times n \) submatrix, containing the rows with indices in \(s \).

Theorem.

\[
\det(AB) = \sum_{s \in S_{m,n}} \det(A_s) \det(B_s).
\]

Claim. Let \(N \) be an \((n-1) \times (n-1) \) submatrix of the (directed) incidence matrix \(I \). If the \(n-1 \) chosen columns form a spanning tree then \(\det N = \pm 1 \).

\[
I = \begin{pmatrix}
-1 & 0 & 1 & 1 & 0 \\
0 & 1 & -1 & 0 & 1 \\
1 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & -1
\end{pmatrix}
\]

\[
N = \begin{pmatrix}
-1 & 0 & 0 \\
0 & 1 & 1 \\
1 & -1 & 0
\end{pmatrix}
\]

\[\det N = -1\]
Proof

• **Proof.** By induction on $|V|$.

 ◦ **Induction basis.** If $|V| = 2$, then a spanning tree is a single edge. Since this edge is connected to both vertices, every relevant 1×1 matrix has determinant ± 1.

 $$M = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

• **Induction step.** Any tree has at least two leaves. Since we removed one row from I, there is a row in N corresponding to a leaf v.

 • The row of v contains a single non-zero element in column ℓ.

 $$I = \begin{pmatrix} -1 & 0 & 1 & 1 & 0 \\ 0 & 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & -1 \end{pmatrix} \quad N = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & -1 & 0 \end{pmatrix}$$

 $$\det N = -1$$

Completing the Induction Step

• Let N' be the matrix obtained by removing from N the row of the leaf v and the l'th column.
 ◦ We have $\det N = \pm 1 \cdot \det N'$.
 ◦ **By the induction hypothesis**, $\det N' = \pm 1$ since N' is an $(n - 2) \times (n - 2)$ submatrix of the incidence matrix of $G - v$.
 ◦ Thus, we have $\det N = \pm 1$.

Claim. Let N be an $(n - 1) \times (n - 1)$ submatrix of the (directed) incidence matrix I. If the $n - 1$ chosen columns do **not** form a spanning tree then $\det N = 0$.

$$I = \begin{pmatrix}
-1 & 0 & 1 & 1 & 0 \\
0 & 1 & -1 & 0 & 1 \\
1 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & -1
\end{pmatrix}, \quad N = \begin{pmatrix}
-1 & 0 & 1 \\
0 & 1 & -1 \\
1 & -1 & 0
\end{pmatrix}$$
Proof

- A graph $G = (V, E)$ with $|E| = |V| - 1$ that is not a spanning tree must contain a cycle C.
 - We take a linear combination of the column vectors of N. If the corresponding edge is not in C, its coefficient is 0. If it goes clockwise in C, a coefficient of 1. Otherwise, -1.
 - Every row has one 1 and one -1, so the linear combination is zero.
 - Since the columns are dependent, the determinant equals 0.

Concluding the Proof

- We have $M_j = I_j I_j^t$.
- By the Cauchy–Binet Formula
 $$\det M_j = \det I_j I_j^t = \sum_{s \in S_{m,n}} \det \left((I_j)_s \right) \det \left((I_j^t)_s \right).$$
- A subset $s \in S_{m,n}$ contributes 1 to the sum iff it corresponds to a spanning tree.
 - Thus, the determinant is $\tau(G)$.
The End

- Before Ted Kaczynski was the Unabomber, he was a mathematics professor at Berkley.
 - At the time, he was the youngest professor ever to get hired by Berkley.
 - His specialty was complex analysis.