Ma/CS 6b
Class 2: Matchings

By Adam Sheffer

- Send anonymous suggestions and complaints *from* here.
- Email: adamcandobetter@gmail.com
- Password: anonymous2

There aren’t enough crocodiles in the presentations

Only today! 99% off for pirate garden gnomes!

Adam make me a public key!
National Resident Matching Program

- Every medical student who is about to graduate ranks hospitals in which she wants to do her residency.
- Every hospital ranks students that it is interested in.
- Every year, over 20,000 applicants apply to about 1,800 programs.
- How can we handle this?

Bipartite Graphs

- A graph $G = (V, E)$ is bipartite if we can partition V into disjoint subsets $V_1, V_2 \subseteq V$ such that every edge of E is between a vertex of V_1 and V_2.
- Equivalently, the vertices of V can be colored red and blue such that no edge is monochromatic.
A Useful Graph Family

- $K_{m,n}$ – a complete bipartite graph with m vertices on one side and m on the other (there is an edge between every two vertices on opposite sides).

Reminder: Matchings

- A matching in an graph is a set of vertex-disjoint edges.
- The size of a matching is the number of edges in it.
- A maximum matching of G is a matching of maximum size.
Reminder: Perfect Matchings

• A *perfect matching* of a graph $G = (V, E)$ is a matching of size $|V|/2$.

Back to the Medical Students

• How can we approach our medical students problem?
 ◦ *Bipartite graph* – a vertex in V_1 for each student. A vertex in V_2 for each hospital.
 ◦ An edge exists between a student and a hospital if they are interested in each other.
Solving the Problem?

- What should we do with the student-hospital graph?
 - We can find the maximum matching, but there are two problems.

First Problem

- **Problem.** Some hospitals might wish to hire more than one resident.
- **Solution.** (as we saw in 6a)
 - If a hospital wants to hire k residents, in the graph we have k vertices for it.
Second Problem

• Problem. We did not consider the rankings of the students and hospitals.
 ◦ We might have chosen the red matching.
 ◦ However, perhaps student A prefers hospital β, student B prefers hospital α, and similarly for the hospitals.

Alternating Paths

• Let $G = (V_1 \cup V_2, E)$ be a bipartite graph, and let M be a matching of G.
• A path is alternating for M if it starts with an unmatched vertex of V_1 and every other edge of it is in M.

* Notice that this is definition is different than the one from 6a.
Augmenting Paths

- Let $G = (V_1 \cup V_2, E)$ be a bipartite graph, and let M be a matching of G.
- A path is augmenting for M if it is an alternating path of M, and it ends in an unmatched vertex.

Using Augmenting Paths

- Consider a matching M and an augmenting path P of M.
- By switching in P the edges that are in M with the edges that are not, we obtain a larger matching.
Augmenting Paths and Matchings

- **Claim.** Let \(G = (V_1 \cup V_2, E) \) be a bipartite graph and let \(M \) be a matching in \(G \). Then \(M \) is a not a maximum matching iff there exists an augmenting paths for it.

- **Proof.**
 - If there is an augmenting path, we can use it to find a larger matching, so \(M \) is not a maximum matching.
 - It remains to prove that if \(M \) is not a maximum matching, there is an augmenting path for it.

Completing the Proof

- Let \(M^* \) be a maximum matching of \(G \).
- Let \(F \) be the set of edges that are either in \(M \) or in \(M^* \), but not in both. Set \(G' = (V, F) \).
- In \(G' \), every vertex is of degree at most two.
- Thus, \(G' \) is composed of paths, cycles, and isolated vertices. Since \(|M| < |M^*| \), there must be at least one augmenting path for \(M \).
Traffic Cameras

- **Problem.** The city of Pasadena wants to have traffic cameras that cover all of the roads of the city.
 - A camera covers 360° and sees far enough to cover a road at least until the next intersection.
 - How can we efficiently find the minimum number of cameras that are necessary?

Considering the Problem as a Graph

- We build a graph:
 - A vertex for every intersection.
 - An edge between every two adjacent intersections.

- **What do we need to find in the graph?**
 - A minimum set of vertices S such that every edge is adjacent to at least one vertex of S.
Vertex Covers

- Let $G = (V, E)$ be a graph. A vertex cover of G is a set of vertices $V' \subseteq V$ such that every edge of E is incident to at least one vertex of V'.

More About Vertex Covers

- No polynomial-time algorithm is known for finding the minimum vertex cover.
- This is a main open problem in theoretical computer science.
 - Significantly easier in bipartite graphs.
König’s Theorem

- **Theorem.** Let $G = (V_1 \cup V_2, E)$ be a bipartite graph. Then the size of a maximum matching of G is equal to the size of a minimum vertex cover of G.

- **Proof.**
 - m - a maximum matching.
 - v – a minimum vertex cover.
 - Since the edges of m are vertex-disjoint and v must contain a vertex of each, we have $|v| \geq |m|$.

Proof (cont.)

- v – a minimum vertex cover.
- m – a maximum matching.
- We saw that v is larger or equal than m.
- To complete the proof, it suffices to find a vertex cover of size $|m|$.
- We build a subset $V' \subseteq V$ by taking a vertex out of each edge $e = (a, b)$ of m.
 - If an alternating path ends in $b \in m$ we add b to V'.
 - Otherwise, we add a to V'.
Proof (cont.)

- V' consists of one vertex of each edge $(a, b) \in m$.
 - If an alternating path ends in $b \in m$ we add b to V'.
 - Otherwise, we add a to V'.

- Assume, for contradiction, that there is an edge $(a, b) \in E$ that is not covered by V'.
 - Either a or b must be matched in m, since otherwise m is not a maximum matching.

The Case where b is Matched

- Assume that b is matched in m.
 - Then $(a', b) \in m$ for some $a' \in V_1$.
 - Since $b \notin V'$, then $a' \in V'$, and no alternating path ends at b.
 - But (a, b) is such an alternating path! Contradiction!
The Case where a is Matched

- Assume that a is matched in m.
 - Then $(a, b') \in m$ for some $b' \in V_2$.
 - Since $a \notin V'$, then $b' \in V'$, and there is an alternating path P ending at b'.
 - If $(a, b') \notin P$, then the path $P + (a, b') + (a, b)$ is an alternating path ending in b. Since b is unmatched, this an augmenting path for m, contradicting the maximality of m.
 - It cannot be that $(a, b') \in P$. No alternating path can end in (a, b').

Illustration #1

- If $(a, b') \notin P$, then the path $P + (a, b') + (a, b)$ is an alternating path ending in b.
Illustration #2

- It cannot be that \((a, b') \in P\). No alternating path can end in \((a, b')\).
 - In the path, we move from \(V_1\) to \(V_2\) only with unmatched edges.

Concluding the Proof

- \(m\) - a maximum matching.
- We defined a subset \(V' \subset V\) of size \(|m|\) and proved that it is a vertex cover.
- We also proved that any vertex cover is of size at least \(|m|\), implying that \(V'\) is a minimum vertex cover.
 - That is, the minimum vertex cover has the same size as the maximum matching.
Vertex Covers in Bipartite Graphs

Problem. Describe a polynomial-time algorithm for finding a vertex cover in a bipartite graph $G = (V_1 \cup V_2, E)$.

Solution.
- From 6a, we know an algorithm for finding a maximum matching M in a bipartite graph.
- We pick one vertex out of each edge $(a, b) \in M$. If an alternating path ends in b we pick b. Otherwise, we pick a.
- But how do we know whether such a path exists?

Finding an Alternating Path

- Let $G = (V_1 \cup V_2, E)$ be a bipartite graph, and let M be a maximum matching.
- We wish to find whether there is an alternating path for M ending at a vertex $b \in V_2$.
 - We run a variant of BFS from b.

BFS Variant

- The root of the BFS tree is b.
- At the first level we have vertices that are adjacent to b in V_1.

BFS Variant (2)

- For each vertex of level 1, if it is matched in M, we connect it to its match.
BFS Variant (3)

- For each vertex of level 2, we connect it (by edges not in M) to any of its neighbors in V_1 that are not in the tree yet.

![BFS Variant (3) Diagram]

BFS Variant (4)

- We repeat this process:
 - Vertices of even levels (q_i’s) have as their children every new vertex adjacent to them.
 - Vertices of odd levels (p_i’s) have only their matching vertex as a child.

![BFS Variant (4) Diagram]
BFS Variant (5)

• How can we tell whether an alternating path for M end at b?
 ◦ Every such path corresponds to an unmatched vertex at an odd level of the tree (i.e., a leaf at an odd level).

Summing up

• Given a bipartite graph $G = (V_1 \cup V_2)$, we find a minimum vertex cover V' of G by
 ◦ Finding a perfect matching M.
 ◦ From each edge $(a, b) \in M$, we add one vertex to V':
 • If an alternating path ends in $b \in m$ we pick b. Otherwise, we pick a.
 • To check whether such a path exists, run the BFS variant that we just saw.
The End

There's a certain type of brain that's easily disengaged.

If you show it an interesting problem, it immediately drops everything else to work on it.

This has led me to invent a new story: NERD SNIPING. See that physicist crossing the road?

Hey!

On this infinite grid of ideal one-ohm resistors, what's the equivalent resistance between the two marked nodes?

It's... hypnotic. Interesting. Maybe if you start with ... no, wait. Hmm... you could-

F0000M

I will have no part in this. Crack, you're a s**t at fun! physicists are two things: mathematicians three.