Read from the textbook: Chapter 1, Sections 1–10.

You can collaborate on the problems as long as you write up all solutions in your own words and understand those solutions.

1) (4 pts) From Ch.1.5 in Apostol: Problem 28.
2) (8 pts) From Ch. 1.10 in Apostol: Problem 22.
3) (5 pts) Let \mathcal{U} be a non empty collection of subspaces of a vector space V. Prove

 $W = \bigcap_{U \in \mathcal{U}} U$ is a subspace of V.

4) (8pts) Let \mathcal{F} be a system of m-linear equations in n-variables x_1, \ldots, x_n

 $\sum_{j=1}^{n} a_{i,j}x_j = b_i \quad 1 \leq i \leq m$

 with $a_{i,j}, b_i \in \mathbb{R}$ or \mathbb{C}. A solution to \mathcal{F} is a vector $v = (v_1, \ldots, v_n) \in V_n$ such that $\sum_{j=1}^{n} a_{i,j}v_j = b_i$ for all i. Determine for which $(b_1, \ldots, b_m) \in V_m$ the set $S(\mathcal{F})$ of solutions of \mathcal{F} is a subspaces of V_n. Show that your answer is correct.