The following is a list of basic questions, rephrased in different contexts.

Vector Spaces
Notions: subspaces, linear combinations, minimal linear subspace spanned by a collection of vectors, intersection, sum.

Let $S = \{v_1, \ldots, v_n\}$ be a collection of vectors of V:
1. Is S linearly independent?
2. Is S a generating set?
3. Is S a basis of V?
4. Compute a basis of $L(S)$.
5. Given w in V: is $w \in L(S)$? If possible, write w as a linear combination of the vectors in S. Are the coefficients unique?
6. If they exist, exhibit non-trivial linear combinations among the vectors in S.

Linear transformations
Notions: range, nullspace, composition, inverses, preimages.

Let $f : V \to W$ a linear transformation:
1. Is f injective?
2. Is f surjective?
3. Is f bijective?
4. Compute the inverse of f.
5. Compute a basis of the range of f.
6. Given $w \in W$: is w in the range? If it exists, find $v \in V$ such that $f(v) = w$.
7. Compute a basis of the nullspace of f.

Matrices and Linear systems
Notions: multiplications, inverses, elementary matrices, REF, homogenous and non-homogenous linear systems.

Let $Ax = b$ be a linear system.
1. If a solution exists, is it unique?
2. Does a solution exists for any b?
3. Does a solution exists and is unique for any b?
4. Compute the inverse of A.
5. For which b does the linear system admits solutions?
7. Solve the associated homogenous linear system.

Determinants and minors
Notions: singular matrices, rank of a matrix, nullity of a matrix.

Let $Ax = b$ be a linear system, n variable, m equations.
1. Is the rank equal to n?
2. Is the rank equal to m?
3. Is the matrix non-singular? A.k.a. is the determinant non-zero?
4. Compute the inverse of A.
5. For which b is the rank of A equal to the rank of the completed matrix $(A|b)$?
(6) Given b: compute the ranks of A and $(A|b)$.

Euclidean spaces

Notions: inner product, distance, orthogonality, isometries, Gramm-Schmidt, projections, best approximation.

Let S be a collection of vectors of an euclidean space V:

1. Is S orthogonal?
2. Find an orthogonal/orthonormal basis B of $L(S)$.
3. Given $w \in V$: is $w \in L(S)$? If possible write w as a linear combination of the vectors in B. If not, compute the distance of w from U.
4. Compute the orthogonal complement of $L(S)$. A.k.a. extend B to an orthogonal/orthonormal basis of V.

Eigenvalues and eigenvectors

Notions: characteristic polynomial, algebraic multiplicity and geometric multiplicity of eigenvectors. Diagonalization. Similitude.

Let V be a vector space and $T : V \to V$ a linear transformation

- Compute the characteristic polynomial of T. A.k.a. compute the eigenvalues of T.
- Is T diagonalizable? A.k.a. does V has a basis consisting of eigenvectors of T.
- If possible, find one / all diagonal matrices representing T with respect to a basis (of eigenvectors) of V.
- Compute all eigenspaces of T. If possible, find a basis of V consisting of eigenvectors.
- For V is an euclidean space: if possible, find an orthonormal basis of V consisting of eigenvectors.