You must do problems (1) through (4). Problem (5) is for extra credit.

(1) Let K/k be a field extension, and $x \in K$. Fix a k-derivation D of K, by which we mean an element of $\text{Der}_k(K, K)$ (which is often abbreviated as $\text{Der}_k(K)$). Prove the following:

(a) $D^n: K \to K$ is a k-linear map for every integer $n \geq 0$.
(b) If for some $n > 0$, we have

(i) $(D + x)^n(1) = 0$, but $(D + x)^{n-1}(1) \neq 0$,

then

(ii) $\exists y \in \text{Ker}(D^n) - \text{Ker}(D^{n-1})$ s.t. $x = D(y)/y$.

(c) (ii) \implies (i).

(When $x = D(y)/y$, we call x the logarithmic derivative of y (relative to D).)

(2) Let R be a commutative ring and $f \in R$. Put $X_f = \text{Spec}(R_f) \subset X := \text{Spec}(R)$. Show the equivalence of the following:

(a) f is nilpotent;
(b) $f \in \bigcap \mathfrak{p} \in X \mathfrak{p}$;
(c) X_f is empty;
(d) $R_f = 0$.

(3) (Exactness of localization) Let R be a commutative ring R and S a multiplicative set in R. Suppose we are given a short exact sequence

$$0 \to L \to M \to N \to 0$$

of R-modules, show that the associated sequence

$$0 \to S^{-1}L \to S^{-1}M \to S^{-1}N \to 0$$

is also exact.

(4) Let R be a commutative ring which is Artinian, i.e., satisfies the descending chain condition on ideals. Prove the following:

(a) The maximal ideal spectrum of R, denoted $\text{maxSpec}(R)$, is a finite set.
(b) For some integer n, the map $R \to \prod_{\mathfrak{m} \in \text{maxSpec}(R)}(R/\mathfrak{m}^n)$ is a bijection.
(c) For each $n \geq 1$, R/\mathfrak{m}^n is a local ring, i.e., has a unique maximal ideal.
Let $A \to B$ be a homomorphism of commutative rings, making B an A-algebra. Consider the diagonal homomorphism

$$\Delta : B \otimes_A B \to B, \quad b_1 \otimes b_2 \mapsto b_1 b_2,$$

with kernel I. We may view $B \otimes_A B$ as a B-module by $(b, b_1 \otimes b_2) \mapsto bb_1 \otimes b_2$.

(a) Show that the B-module structure on $B \otimes_A B$ induces one on I/I^2.

(b) Show that the map $d : B \to I/I^2$ defined by setting $db = 1 \otimes b - b \otimes 1$ is an A-derivation of B.

(c) Prove that $(I/I^2, d)$ satisfies the universal property: For every B-module M, and any A-derivation D of B with values in M, there is a unique homomorphism $f : I/I^2 \to M$ such that $D = f \circ d$.

(d) There is a natural isomorphism of I/I^2 with the module of (relative) differentials $\Omega^1_{B/A}$ as defined in class.

Here is the definition of the module of differentials from class: Let B be generated (as an A-algebra) by $\{x_i \mid i \in I\}$ subject to relations $\{g_j((x_i)) = 0, \ j \in J\}$. Then $\Omega^1_{B/A}$ is the module generated by the symbols $\{dx_i \mid i \in I\}$ modulo the relations $\sum_i \frac{\partial B_i}{\partial x_i} dx_i = 0$, for all $j \in J$.)