You must do problems (1) through (4). Problem (5) is for extra credit.

(1) Let \(k \) be a field and \(E = k(X) \), where \(X \) is a variable, i.e., transcendental over \(k \). Let \(Y = f(X)/g(X) \) be an element of \(E \) not in \(k \), written in lowest terms as a quotient of polynomials \(f, g \) in \(k[X] \) having no common factor (which means \(f, g \) have no common non-constant factor). Prove that \(Y \) is transcendental over \(k \), and that \([k(X) : k(Y)] = \deg(f/g) \), the degree of \(f/g \), defined to be \(\max(\deg(f), \deg(g)) \).

(2) Using (1), describe the group of automorphisms of \(k(X) \) over \(k \).

(3) Let \(k \) be a field, \(x \) transcendental over \(k \), and \(F \neq k \) a field such that \(k \subset F \subset k(x) \). Let \(f(X) = X^n + a_1 X^{n-1} + \cdots + a_n \) be the minimal polynomial of \(x \) over \(F \). Write \(a_i = b_i(x)/b_0(x) \), with (minimally chosen) \(b_i(X) \in k[X] \) (\(\forall i \)). Not all the \(a_i \) can be in \(k \) (since \(x \) is transcendental over \(k \)). Pick \(a_i \in F - k \) and call it \(y \). We may write \(y = g(x)/h(x) \in F - k \), with \(g, h \in k[X] \) having no common factor. Put \(m = \deg(g/h) \). We may choose \(i \) such that \(m \) is maximal.
 (a) Put \(U(X, Z) = b_0(Z)X^n + b_1(Z)X^{n-1} + \cdots + b_n(Z) \).
 Show that \(U(X, Z) \) is a polynomial in \(Z \) of degree \(\geq m \) which is not divisible by any non-constant polynomial in \(k[Z] \).
 (b) Show that \(g(X)h(Z) - g(Z)h(X) \) is a polynomial of degree \(\leq m \) in each of the variables \(X, Z \), which is not divisible by any non-constant polynomial in \(k[X] \), but is divisible by \(U(X, Z) \).

(4) Let \(k, F, x, y, m \) be as in (3). Making use of the results of (3), prove the following:
 (a) \([k(x) : k(y)] = m \).
 (b) \(F = k(y) \).
 (The assertion of (b) is called Lüroth’s theorem.)

(5) Let \(k \) and \(E = k(x_1, \ldots, x_n, t) \) be fields, with \(x_1, x_2, \ldots, x_n \) algebraically independent over \(k \), and \(t \) algebraic over \(K := k(x_1, \ldots, x_n) \). Prove the following:
 (a) There is a unique (up to a multiple) polynomial \(f \in k[X_1, \ldots, X_n, T] \) such that \(f(x_1, \ldots, x_n, t) = 0 \) and \(f \) generates the ideal of all polynomials which vanish at \((x_1, \ldots, x_n, t) \).
(b) $[E : K]$ is the degree of f in T.
(c) E/K is separable iff $\frac{\partial f}{\partial T} \neq 0$.