You must do problems (1) through (4). Problem (5) is for extra credit.

(1)
(a) If \(f : A \to B \) is a homomorphism of commutative rings and \(P \) a prime ideal in \(B \), show that \(f^{-1}(P) := \{ a \in A \mid f(a) \in P \} \) is a prime ideal in \(A \).
(b) Give examples where \(P \) is maximal, but \(f^{-1}(P) \) is not, and vice versa.
(c) Suppose \(A = A_1 \times A_2 \) is a direct product of (commutative) rings, with projections \(f_j : A \to A_j, j = 1, 2 \). Prove that, for each prime ideal \(Q \) in \(A \), there is a unique \(j \in \{1, 2\} \) and a prime ideal \(P_j \) in \(A_j \) such that \(Q = f_j^{-1}(P_j) \).

(2) Let \(\varphi : A \to B \) be a homomorphism of commutative rings such that \(B \) is integral over \(A \). Prove the following:
(a) If \(\varphi \) is injective and \(B \) an integral domain, the \(B \) is a field iff \(A \) is a field.
(b) If \(Q \) is a prime ideal of \(B \) and \(P = \varphi^{-1}(Q) \), then \(Q \) is a maximal ideal iff \(P \) is one.
(c) If \(A \) is a local ring, i.e., has a unique maximal ideal \(M \), then there is a maximal ideal \(M' \) of \(B \) such that \(M = \varphi^{-1}(M') \).

(3) Let \(A \) be a Noetherian integral domain with fraction field \(F \), and \(E \) a finite separable extension of \(F \). Denote by \(B \) the ring of all the elements of \(E \) which are integral over \(A \), called the integral closure of \(A \) in \(E \). Suppose furthermore that \(A \) is integrally closed in \(F \), i.e., contains all the elements of \(F \) which are integral over \(A \). The show that \(B \) is finitely generated as an \(A \)-module.

(4) Let \(f_1, \ldots, f_r \) be polynomials in \(R := k[X_1, \ldots, X_n] \), with \(k \) an algebraically closed field, such that they have no common zero. Show that the ideal they generate is all of \(R \).
(Hint: Think about what Weak N"ullstellensatz says!)
Give a counterexample for a non-algebraically closed field \(k \).

(5) Let \(R \) be a Noetherian ring, \(B \) a finitely generated \(R \)-algebra, and \(G \) a finite group of \(R \)-algebra automorphisms of \(B \). Put \(A = B^G \), the subset of elements in \(B \) which are fixed by \(G \). Show that \(A \) is a finitely generated \(R \)-algebra.
(Hint: Given any \(\beta \in B \), exhibit a monic polynomial equation over \(A \) which it satisfies.)