CHAPTER I. THE CONCEPT OF A COMPUTABLE FUNCTION

§1. Alphabets and Words.

§2. Primitive recursive functions on words.
 2.1. Definition.
 2.2. Examples.
 2.3. Basic closure properties of primitive recursive functions and relations.
 2.4. More examples.
 2.5. Primitive recursive functions on \(\mathbb{N} \) - Codings of finite sequences.
 2.6. Equivalence of alphabets.

§3. Partial recursive functions on words.
 3.1. Definition and basic facts.
 3.2. Ackermann's function.

§4. Register machines.
 4.1. Definition.
 4.2. RM - computable functions.

§5. Turing machines.
 5.1. Definition.
 5.2. TM - computable functions.

§6. Markov algorithms
 6.1. Definition.
 6.2. MA - computable functions.

§7. Equivalence between the various notions of computability.

§8. The Church-Turing Thesis.

CHAPTER II. RECURSION THEORY ON \(\mathbb{N} \).

§1. Coding of TM and the Normal Form Theorem.

§2. Universal Functions.

§3. Recursively Enumerable Sets.

§4. The Undecidability of the Halting Problem.
§5. Effective Enumerations of the Partial Recursive Functions, the s-m-n Theorem and Uniformities.

§6. The Rice and Rice-Shapiro Theorems.

§7. The Second Recursion Theorem.

§9. The First Recursion Theorem.

§10. Functional Recursion.