1) Let \(\{ \varphi_e \} \) be an acceptable effective enumeration of the partial recursive functions. Let \(h \) be a total recursive function. Show that there are infinitely many \(n \) such that
\[
\varphi_{h(n)} = \varphi_n.
\]
Conclude that no acceptable effective enumeration of the partial recursive functions is 1–1.

2) Show that if \(\{ \varphi_e \} \) is an acceptable effective enumeration of the partial recursive functions, then there is a total recursive function \(p \) such that \(\varphi_{p(i)}(x) = \varphi_i(p(i), x) \). Similarly, show that there is a total recursive function \(q \) such that for any \(i \) for which \(\varphi_i \) is total, we have \(\varphi_{q(i)} = \varphi_{\varphi_i(q(i))} \).

3) Let \(\{ \varphi_e \} \) be an acceptable effective enumeration of the partial recursive functions. Show that there are \(m \neq n \) such that \(\varphi_m(x) = n \) and \(\varphi_n(x) = m \).

4*) Let \(\{ \varphi_e \} \) be an acceptable effective enumeration of the partial recursive functions. Let \(W_e = \text{domain}(\varphi_e) \). Then \(\{ W_e \} \) is an effective enumeration of the r.e. sets, i.e., each \(W_e \) is r.e., for each r.e. set \(A \) there is \(e \) such that \(A = W_e \) and the relation \(W(e, x) \Leftrightarrow x \in W_e \Leftrightarrow \varphi(e, x) \downarrow \) is r.e. Use 2) above, to show that for any total recursive function \(h(x, y) \), there is a total recursive function \(s(x) \) such that \(W_{s(x)} = W_{h(x,y)} \).

Call a set \(P \) productive if there is a partial recursive function \(f \) such that for any \(e \), if \(W_e \subseteq P \), then \(f(e) \downarrow \) and \(f(e) \in P \setminus W_e \). Show that if \(P \) is productive, then for any co-r.e. set \(A \) (i.e., a set whose complement is r.e.), there is a total recursive function \(g \) such that \(x \in A \Leftrightarrow g(x) \in P \).

Hint. Show that there is a total recursive function \(s \) such that if \(x \in A \) then \(W_{s(x)} = \emptyset \) and if \(x \notin A \), then \(f(s(x)) \downarrow \) and \(W_{s(x)} = \{ f(s(x)) \} \).

Note: Homework rules are posted in the Ma/CS 117a web page.
Each problem is worth 25 points.