PROBLEM SET NO. 7, PART II

• Let $X = \{(x_n)_{n \in \mathbb{N}} : \sum_{n \in \mathbb{N}} |x_n| < \infty\}$ and

 $\|x\| = \sum_{n \in \mathbb{N}} |x_n|$ for $x = (x_n)_{n \in \mathbb{N}}$.

 Show that $\| \cdot \|$ is a norm on X and show that X is complete with respect to the corresponding metric.

• Define $G : \mathbb{R}^2 \to \mathbb{R}$ by

 $G(x, y) := \begin{cases}
 \frac{xy}{\sqrt{x^2 + y^2}}, & \text{if } (x, y) \neq (0, 0), \\
 0, & \text{if } (x, y) = (0, 0).
 \end{cases}$

 Show that G is continuous, and all its partial derivatives exist on all of \mathbb{R}^2, but G is not differentiable in the sense of Fréchet.

• Let X, Y, Z be three normed spaces. Prove that if $F : X \to Y$ is differentiable at $x_0 \in X$, and $G : Y \to Z$ is differentiable at $y_0 = F(x_0) \in Y$, then $G \circ F$ is differentiable at x_0 and

 $$(G \circ F)'(x_0) = G'(F(x_0))F'(x_0).$$

Problem set due on Wednesday, 12/3, 4:00 PM, in math department’s drop box.