Homework 7: Polynomials *

LIUBOMIR CHIRIAC

Problem 1. Let k be a fixed positive integer. The n-th derivative of $\frac{1}{x^{k-1}}$ has the form

$$\frac{P_n(x)}{(x^k-1)^{n+1}},$$

where $P_n(x)$ is a polynomial. Find $P_n(1)$.

Problem 2. Find a nonzero polynomial P(x, y) such that $P(\lfloor a \rfloor, \lfloor 2a \rfloor) = 0$, for all $a \in \mathbb{R}$. (Here $\lfloor x \rfloor$ denotes the greatest integer less than or equal to x.)

Problem 3. Determine all polynomials P(x) such that

$$P(x^{2} + 1) = ((P(x))^{2} + 1 \text{ and } P(0) = 0.$$

Problem 4. Let

$$f(x) = az^{4} + bz^{3} + cz^{2} + dz + e = a(z - r_{1})(z - r_{2})(z - r_{3})(z - r_{4})$$

where $a, b, c, d, e \in \mathbb{Z}$, $a \neq 0$. Show that if $r_1 + r_2 \in \mathbb{Q}$ and if $r_1 + r_2 \neq r_3 + r_4$ then $r_1r_2 \in \mathbb{Q}$.

 $^{^{*}}$ Due on 11/18/2014, in class.